Skip to main content

Advertisement

Log in

High specific capacity and excellent stability of interface-controlled MWCNT based anodes in lithium ion battery

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Rechargeable batteries are in high demand for future hybrid vehicles and electronic devices markets. Among various kinds of rechargeable batteries, Li-ion batteries are most popular for their obvious advantages of high energy and power density, ability to offer higher operating voltage, absence of memory effect, operation over a wider temperature range and showing a low self-discharge rate. Researchers have shown great deal of interest in developing new, improved electrode materials for Li-ion batteries leading to higher specific capacity, longer cycle life and extra safety. In the present study, we have shown that an anode prepared from interface-controlled multiwall carbon nanotubes (MWCNT), directly grown on copper current collectors, may be the best suitable anode for a Li-ion battery. The newly developed anode structure has shown very high specific capacity (almost 2.5 times as that of graphite), excellent rate capability, nil capacity degradation in long-cycle operation and introduced a higher level of safety by avoiding organic binders. Enhanced properties of the anode were well supported by the structural characterization and can be related to very high Li-ion intercalation on the walls of CNTs, as observed in HRTEM. This newly developed CNT-based anode structure is expected to offer appreciable advancement in performance of future Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.-A. Nazri, G. Pistoia, in Lithium Batteries: Science and Technology, (Springer Science+Business Media: New York, 2009).

    Google Scholar 

  2. V. Manev, I. Naidenov, B. Puresheva, P. Zlatilova and G. Pistoia, J. Power Sources 55, 211 (1995).

    Article  CAS  Google Scholar 

  3. H. Dai, A. Javey, E. Pop, D. Mann, Y. Lu, Nano 1, 1 (2006).

    Article  CAS  Google Scholar 

  4. Z.-H. Yang, H.-Q. Wu, Mater. Chem. Phys. 71, 7 (2001).

    Article  CAS  Google Scholar 

  5. E. Frackowiak, F. Béguin, Carbon 40, 1775 (2002).

    Article  CAS  Google Scholar 

  6. H.-C. Shin, M. Liu, B. Sadanadan, A.M. Rao, J. Power Sources 112, 216 (2002).

    Article  CAS  Google Scholar 

  7. A.P. Guo, Z.W. Zhao, H.K. Liu, S.X. Dou, Carbon 43, 1392 (2005).

    Article  CAS  Google Scholar 

  8. E. J. Yoo, J. Kim, E. Hosono, H.-S. Zhoi, T. Kudo, I. Honma, Nano Lett. 8, 2277 (2008).

    Article  CAS  Google Scholar 

  9. B.A. Boukamp, G. C. Lesh, R.A. Huggins, J. Electrochem. Soc. 128, 725 (1981).

    Article  CAS  Google Scholar 

  10. S.-M. Paek, E.-J. Yoo, I. Honma, Nano Lett. 9, 72 (2009).

    Article  CAS  Google Scholar 

  11. J. Fan, T. Wang, C. Yu, B. Tu, Z. Jiang, D. Zhao, Adv. Mater. 16, 1432 (2004).

    Article  CAS  Google Scholar 

  12. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nature Nanotech. 3, 31 (2008).

    Article  CAS  Google Scholar 

  13. S.S. Zhang, T.R. Jow, J. Power Sources 109, 422 (2002).

    Article  CAS  Google Scholar 

  14. A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori, K. Zaghib, J. Power Sources 163, 1047 (2007).

    Article  CAS  Google Scholar 

  15. S.S. Zhang, K. Xu, T.R. Jow, J Power Sources 138, 226 (2004).

    Article  CAS  Google Scholar 

  16. E.P. Roth, D.H. Doughty, J. Franklin, J. Power Sources 134, 222 (2004).

    Article  CAS  Google Scholar 

  17. I. Lahiri, S.-W. Oh, J.Y. Hwang, S. Cho, Y.K. Sun, R. Banerjee, w. Choi, ACS Nano 4, 3440 (2010).

    Article  CAS  Google Scholar 

  18. I. Lahiri, R. Seelaboyina, J.Y. Hwang, R. Banerjee, W. Choi, Carbon 48, 1531 (2010).

    Article  CAS  Google Scholar 

  19. C. Masarapu, V. Subramanian, H. Zhu, B. Wei, Adv. Func. Mater. 19, 1008 (2009).

    Article  CAS  Google Scholar 

  20. W. X. Chen, J. Y. Lee, Z. Liu, Electrochem. Comm. 4, 260 (2002).

    Article  CAS  Google Scholar 

  21. K. Nishidate, M. Hasegawa . Phys. Rev. B 71, 245418 (2005).

    Article  Google Scholar 

  22. J. Shu, H. Li, R. Yang, Y. Shi, X. Huang, Electrochem. Comm. 8, 51 (2006).

    Article  CAS  Google Scholar 

  23. Y. Wang, H.C. Zeng, J.Y. Lee, Adv. Mater. 18, 645 (2006).

    Article  CAS  Google Scholar 

  24. Y. Zhang, X.G. Zhang, H.L. Zhang, Z.G. Zhao, F. Li, C. Liu, H.M. Cheng, Electrochimica Acta 51, 4994 (2006).

    Article  CAS  Google Scholar 

  25. W. Wang, P.N. Kumta, J. Power Sources 172, 650 (2007).

    Article  CAS  Google Scholar 

  26. M.-S. Park, S. A. Needham, G.-X. Wang, Y.-M. Kang, J.-S. Park, S.-X. Dou, H.-K. Liu, Chem. Mater. 19, 2406 (2007).

    Article  CAS  Google Scholar 

  27. C. Li, N. Sun, J. Ni, J. Wang, H. Chu, H. Zhou, M. Li . Y. Li, J. Solid State Chem. 181, 2620 (2008).

    Article  CAS  Google Scholar 

  28. S.-F. Zheng, J.-S. Hu, L.-S. Zhong, W.-G. Song, L.-J. Wan, Y.-G. Guo, Chem. Mater. 20, 3617 (2008).

    Article  CAS  Google Scholar 

  29. B.J. Landi, M.J. Ganter, C.M. Schauerman, C.D. Cress, R.P. Raffaelle, J. Phys. Chem. C 112, 7509 (2008).

    Article  CAS  Google Scholar 

  30. M. Wang, Z.H. Li, G.T. Wu, Russ . J. Electrochem. 41, 1066 (2005).

    Google Scholar 

  31. J. Chen, J.Z. Wang, A.I. Minett, Y. Liu, C. Lynam, H. Liu, G.G. Wallace, Energy Environ. Sci. 2, 393 (2009).

    Article  CAS  Google Scholar 

  32. Y. NuLi, J. Yang, M. Jiang, Mater. Lett. 62, 2092 (2008).

    Article  Google Scholar 

  33. D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, I.A. Aksay, J. Liu, ACS Nano 3, 907 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahiri, I., Oh, SW., Sun, YK. et al. High specific capacity and excellent stability of interface-controlled MWCNT based anodes in lithium ion battery. MRS Online Proceedings Library 1313, 10 (2011). https://doi.org/10.1557/opl.2011.1392

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.1392

Navigation