Skip to main content
Log in

Van der Waals Interactions Between Organic Adsorbates and at Organic/Inorganic Interfaces

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Van der Waals (vdW) interactions play a prominent role in the structure and function of organic/organic and organic/inorganic interfaces. Their accurate determination from first principles, however, is a notoriously difficult task. Recently, a surge of interest in modeling vdW interactions has led to promising theoretical developments. This article reviews the state-of-the-art of describing vdW interactions by density-functional theory with respect to accuracy and practicability. The performance of the different methods is demonstrated for simple systems, such as rare-gas dimers and small organic molecules. The nature of binding at organic/inorganic interfaces is then exemplified for the perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) molecule at surfaces of coinage metals. This fundamental system is the best-characterized organic molecule/metal interface in experiment and theory. We emphasize the crucial importance of a balanced description of both geometry and electronic structure in order to understand and model the properties of such systems. Finally, the relevance of vdW interactions to the function of actual devices based on interfaces is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Ortmann, W.G. Schmidt, F. Bechstedt, Phys. Rev. Lett. 95, 186101 (2005).

    Google Scholar 

  2. S.D. Chakarova-Käck, E. Schröder, B.I. Lundqvist, D.C. Langreth, Phys. Rev. Lett. 96, 146107 (2006).

    Google Scholar 

  3. E. McNellis, J. Meyer, K. Reuter, Phys. Rev. B 80, 205414 (2009).

    Google Scholar 

  4. G. Mercurio, E. McNellis, I. Martin, S. Hagen, F. Leyssner, S. Soubatch, J. Meyer, M. Wolf, P. Tegeder, F.S. Tautz, K. Reuter, Phys. Rev. Lett. 104, 036102 (2010).

    Google Scholar 

  5. E. McNellis, PhD thesis, Fritz-Haber-Institut der MPG (2010).

  6. N. Atodiresei, V. Caciuc, P. Lazic, S. Blügel, Phys. Rev. Lett. 102, 136809 (2009).

    Google Scholar 

  7. P. Sony, P. Puschnig, D. Nabok, C. Ambrosch-Draxl, Phys. Rev. Lett. 99, 176401 (2007).

    Google Scholar 

  8. L. Romaner, D. Nabok, P. Puschnig, E. Zojer, C. Ambrosch-Draxl, New J. Phys. 11, 053010 (2009).

    Google Scholar 

  9. M. Rohlfing, T. Bredow, Phys. Rev. Lett. 101, 266106 (2008).

    Google Scholar 

  10. G. Heimel, L. Romaner, J.-L. Bredas, E. Zojer, Phys. Rev. Lett. 96, 196806 (2006).

    Google Scholar 

  11. C.D. Sherrill, T. Takatani, E.G. Hohenstein, J. Phys. Chem. A 113, 10146 (2009).

    Google Scholar 

  12. P. Jurečka, J. Sponer, J. Černý, P. Hobza, Phys. Chem. Chem. Phys. 8, 1985 (2006).

    Google Scholar 

  13. A. Hesselmann, J. Chem. Phys. 128, 144112 (2008).

    Google Scholar 

  14. A. Tkatchenko, R.A. DiStasio Jr., M. Head-Gordon, M. Scheffler, J. Chem. Phys. 131, 094106 (2009).

    Google Scholar 

  15. D. Bohm, D. Pines, Phys. Rev. 92, 609 (1953).

    Google Scholar 

  16. D.C. Langreth, J.P. Perdew, Phys. Rev. B 15, 2884 (1977).

    Google Scholar 

  17. X. Ren, P. Rinke, M. Scheffler, Phys. Rev. B 80, 045402 (2009).

    Google Scholar 

  18. J. Harl, G. Kresse, Phys. Rev. Lett. 103, 056401 (2009).

    Google Scholar 

  19. Y. Andersson, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 76, 102 (1996).

    Google Scholar 

  20. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).

    Google Scholar 

  21. D.C. Langreth, B.I. Lundqvist, S.D. Chakarova-Käck, V.R. Cooper, M. Dion, P. Hyldgaard, A. Kelkkanen, J. Kleis, L. Kong, S. Li, P.G. Moses, E. Murray, A. Puzder, H. Rydberg, E. Schröder, T. Thonhauser, J. Phys. Condens. Matter 21, 084203 (2009).

    Google Scholar 

  22. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Google Scholar 

  23. P. Jurečka, J. Černý, P. Hobza, D.R. Salahub, J. Comput. Chem. 28, 555 (2006).

    Google Scholar 

  24. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).

    Google Scholar 

  25. Y. Zhang, W. Yang, Phys. Rev. Lett. 80, 890 (1998).

    Google Scholar 

  26. G. Roman-Perez, J. Soler, Phys. Rev. Lett. 103, 096102 (2009).

    Google Scholar 

  27. A. Gulans, M.J. Puska, R.M. Nieminen, Phys. Rev. B 79, 201105(R) (2009).

    Google Scholar 

  28. O.A. Vydrov, T. Van Voorhis, Phys. Rev. Lett. 103, 063004 (2009).

    Google Scholar 

  29. J. Klimes, D.R. Bowler, A. Michaelides, J. Phys. Condens. Matter 22, 022201 (2010).

    Google Scholar 

  30. E.R. Johnson, A.D. Becke, J. Chem. Phys. 123, 024101 (2005).

    Google Scholar 

  31. P.L. Silvestrelli, Phys. Rev. Lett. 100, 053002 (2008).

    Google Scholar 

  32. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  33. T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, D.C. Langreth, Phys. Rev. B 76, 125112 (2007).

    Google Scholar 

  34. N. Marom, A. Tkatchenko, M. Scheffler, L. Kronik, J. Chem. Theory Comput. 6, 81 (2010).

    Google Scholar 

  35. W.G. Aulbur, L. Jönsson, J.W. Wilkins, Solid State Phys.: Adv. Res. Appl. 54, 1 (2000).

    Google Scholar 

  36. F.S. Tautz, Prog. Surf. Sci. 82, 479 (2007).

    Google Scholar 

  37. A. Hauschild, K. Karki, B.C.C. Cowie, M. Rohlfing, F.S. Tautz, M. Sokolowski, Phys. Rev. Lett. 94, 036106 (2005).

    Google Scholar 

  38. Y. Zou, L. Kilian, A. Schöll, Th. Schmidt, R. Fink, E. Umbach, Surf. Sci. 600, 1260 (2006).

    Google Scholar 

  39. P. Bagus, V. Staemmler, C. Wöll, Phys. Rev. Lett 89, 096104 (2002).

    Google Scholar 

  40. U. Stahl, D. Gador, A. Soukopp, R. Fink, E. Umbach, Surf. Sci. 414, 423 (1998).

    Google Scholar 

  41. J.B. Neaton, M.S. Hybertsen, S.G. Louie, Phys. Rev. Lett. 97, 216405 (2006).

    Google Scholar 

  42. E. Zaremba, W. Kohn, Phys. Rev. B 13, 2270 (1976).

    Google Scholar 

  43. N. Koch, Chem. Phys. Chem. 8, 1438 (2007).

    Google Scholar 

  44. I.H. Campbell, J.D. Kress, R.L. Martin, D.L. Smith, N.N. Barashkov, J.P. Ferraris, Appl. Phys. Lett. 71, 3528 (1997).

    Google Scholar 

  45. S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, Y. Iwasa, Nat. Mater. 3, 317 (2004).

    Google Scholar 

  46. M. Pfeiffer, A. Beyer, T. Fritz, K. Leo, Appl. Phys. Lett. 73, 3202 (1998).

    Google Scholar 

  47. W.Y. Gao, A. Kahn, J. Appl. Phys. 94, 359 (2003).

    Google Scholar 

  48. N. Koch, S. Duhm, J.P. Rabe, A. Vollmer, R.L. Johnson, Phys. Rev. Lett. 95, 237601 (2005).

    Google Scholar 

  49. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 11, 605 (1999).

    Google Scholar 

  50. S. Braun, W.R. Salaneck, M. Fahlman, Adv. Mater. 21, 1450 (2009).

    Google Scholar 

  51. L. Romaner, G. Heimel, J.-L. Brédas, A. Gerlach, F. Schreiber, R.J. Johnson, J. Zegenhagen, S. Duhm, N. Koch, E. Zojer, Phys. Rev. Lett. 99, 256801 (2007).

    Google Scholar 

  52. A.M. Track, F. Rissner, G. Heimel, L. Romaner, D. Käfer, A. Bashir, G.M. Rangger, O.T. Hofmann, T. Bucko, G. Witte, E. Zojer, J. Phys. Chem. C, 114, 2677 (2010).

    Google Scholar 

  53. J. Harl, L. Schimka, G. Kresse, Phys. Rev. B 81, 115126 (2010).

    Google Scholar 

  54. J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkatchenko, A., Romaner, L., Hofmann, O.T. et al. Van der Waals Interactions Between Organic Adsorbates and at Organic/Inorganic Interfaces. MRS Bulletin 35, 435–442 (2010). https://doi.org/10.1557/mrs2010.581

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.581

Navigation