Skip to main content
Log in

In Situ Scanning Probe Microscopy Nanomechanical Testing

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Scanning probe microscopy (SPM) has undergone rapid advancements since its invention almost three decades ago. Applications have been extended from topographical imaging to the measurement of magnetic fields, frictional forces, electric potentials, capacitance, current flow, piezoelectric response and temperature (to name a few) of inorganic and organic materials, as well as biological entities. Here, we limit our focus to mechanical characterization by taking advantage of the unique imaging and force/displacement sensing capabilities of SPM. This article presents state-of-the-art in situ SPM nanomechanical testing methods spanning (1) probing the mechanical properties of individual one-dimensional nanostructures; (2) mapping local, nanoscale strain fields, fracture, and wear damage of nanostructured heterogeneous materials; and (3) measuring the interfacial strength of nanostructures. The article highlights several novel SPM nanomechanical testing methods, which are expected to lead to further advancements in nanoscale mechanical testing and instrumentation toward the exploration and fundamental understanding of mechanical property size effects in nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.D. Li, B. Bhushan, Mater. Charact. 48, 11 (2002).

    Google Scholar 

  2. X.D. Li, H.S. Gao, C.J. Murphy, K.K. Caswell, Nano Lett. 3, 1495 (2003).

    Google Scholar 

  3. X.Y. Tao, X.D. Li, Nano Lett. 8, 505 (2008).

    Google Scholar 

  4. X.Q. Chen, Z.H. Xu, X.D. Li, M.A. Shaibat, Y. Ishii, R. S. Ruoff, Carbon 45, 416 (2007).

    Google Scholar 

  5. T. Ozkan, M. Naraghi, I. Chasiotis, Carbon 48, 239 (2010).

    Google Scholar 

  6. M. Naraghi, I. Chasiotis, Y. Dzenis, Y. Wen, H. Kahn, Appl. Phys. Lett. 91, 151901 (2007).

    Google Scholar 

  7. M. Naraghi, I. Chasiotis, Y. Dzenis, Y. Wen, H. Kahn, Rev. Sci. Instrum. 78, 0851081 (2007).

    Google Scholar 

  8. I. Chasiotis, Atomic Force Microscopy in Solid Mechanics, Handbook for Experimental Solid Mechanics, W.N. Sharpe, Jr., Ed. (Springer, NY, 2008), pp. 409–443.

    Google Scholar 

  9. B.D. Huey, W. Sigmund, JOM 59, 11 (2007).

    Google Scholar 

  10. J.P. Salvetat, A.J. Kulik, J.M. Bonard, G.A.D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N.A. Burnham, L. Forro, Adv. Mater. 11, 161 (1999).

    Google Scholar 

  11. J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, L. Forro, Phys. Rev. Lett. 82, 944 (1999).

    Google Scholar 

  12. E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 277, 1971 (1997).

    Google Scholar 

  13. B. Wu, A. Heidelberg, J.J. Boland, Nat. Mater. 4, 525 (2005).

    Google Scholar 

  14. H. Ni, X.D. Li, H.S. Gao, Appl. Phys. Lett. 88, 043108 (2006).

    Google Scholar 

  15. H. Ni, X.D. Li, G.S. Cheng, R. Klie, J. Mater. Res. 21, 2882 (2006).

    Google Scholar 

  16. H. Ni, X.D. Li, Nanotechnology 17, 3591 (2006).

    Google Scholar 

  17. A. Heidelberg, L.T. Ngo, B. Wu, M.A. Phillips, S. Sharma, T.I. Kamins, J.E. Sader, J.J. Boland. Nano Lett. 6, 1101 (2006).

    Google Scholar 

  18. H. Ni, X.D. Li. J. Nano Res. 1, 10 (2008).

    Google Scholar 

  19. P. Zhou, C.W. Wu, X.D. Li, Meas. Sci. Technol. 19 (2008).

  20. J.H. Song, X.D. Wang, E. Riedo, Z.L. Wang, Nano Lett. 5, 1954 (2005).

    Google Scholar 

  21. S. Barth, C. Harnagea, S. Mathur, F. Rosei, Nanotechnology 20, 115705 (2009).

    Google Scholar 

  22. M.J. Gordon, T. Baron, F. Dhalluin, P. Gentile, P. Ferret, Nano Lett. 9, 525 (2009).

    Google Scholar 

  23. M. Lucas, W.J. Mai, R.S. Yang, Z.L. Wang, E. Riedo, Nano Lett. 7, 1314 (2007).

    Google Scholar 

  24. M. Lucas, W.J. Mai, R.S. Yang, Z.L. Wang, E. Riedo, Philos. Mag. 87, 2135 (2007).

    Google Scholar 

  25. X.D. Li, W.C. Chang, Y.J. Chao, R.Z. Wang, M. Chang. Nano Lett. 4, 613 (2004).

    Google Scholar 

  26. X.D. Li, Z.H. Xu, R.Z. Wang, Nano Lett. 6, 2301 (2006).

    Google Scholar 

  27. X.N. Wang, Z.W. Niu, S.Q. Li, Q. Wang, X.D. Li, J. Biomed. Mater. Res. Part A 87A, 8 (2008).

    Google Scholar 

  28. J.H. Rong, F. Oberbeck, X.N. Wang, X.D. Li, J. Oxsher, Z.W. Niu, Q. Wang. J. Mater. Chem. 19, 2841 (2009).

    Google Scholar 

  29. G.F. Wang, X.D. Li, Appl. Phys. Lett. 91, 231912 (2007).

    Google Scholar 

  30. G.F. Wang, X.D. Li, J. Appl. Phys. 104, 113517 (2008).

    Google Scholar 

  31. G. Stan, C.V. Ciobanu, P.M. Parthangal, R.F. Cook, Nano Lett. 7, 3691 (2007).

    Google Scholar 

  32. I. Chasiotis, W.G. Knauss, Exp. Mech. 42, 51 (2002).

    Google Scholar 

  33. S. Cho, I. Chasiotis, T.A. Friedmann, J.P. Sullivan, J. Micromech. Microeng. 15, 728 (2005).

    Google Scholar 

  34. I. Chasiotis, IEEE Trans. Device Mater. Reliab. 4, 176 (2004).

    Google Scholar 

  35. S.W. Cho, J.F. Cardenas-Garcia, I. Chasiotis, Sens. Actuators, A 120, 163 (2005).

    Google Scholar 

  36. S.W. Cho, I. Chasiotis, Exp. Mech. 47, 37 (2007).

    Google Scholar 

  37. Q. Chen, I. Chasiotis, C. Chen, A. Roy, Compos. Sci. Technol. 68, 3137 (2008).

    Google Scholar 

  38. E. Guilloteau, H. Charrue, F. Creuzet, Europhys. Lett. 34, 549 (1996).

    Google Scholar 

  39. C. Marliere, S. Prades, F. Celarie, D. Dalmas, D. Bonamy, C. Guillot, E. Bouchaud, J. Phys. Condens. Matter 15, S2377 (2003).

    Google Scholar 

  40. S. Prades, D. Bonamy, D. Dalmas, E. Bouchaud, C. Guillot, Int. J. Solids Struct. 42, 637 (2005).

    Google Scholar 

  41. Y. Tanaka, Y. Kawauchi, T. Kurokawa, H. Furukawa, T. Okajima, J.P. Gong, Macromol. Rapid Commun. 29, 1514 (2008).

    Google Scholar 

  42. I. Chasiotis, S.W. Cho, K. Jonnalagadda, J. Appl. Mech. Trans. ASME 73, 714 (2006).

    Google Scholar 

  43. S.W. Cho, K. Jonnalagadda, I. Chasiotis, Fatigue Fract. Eng. Mater. Struct. 30, 21 (2007).

    Google Scholar 

  44. X.D. Li, W.J. Xu, M.A. Sutton, M. Mello, IEEE Trans. Nanotechnol. 6, 4 (2007).

    Google Scholar 

  45. X.D. Li, W.J. Xu, M.A. Sutton, M. Mello, Mater. Sci. Technol. 22, 835 (2006).

    Google Scholar 

  46. Z.H. Xu, M.A. Sutton, X.D. Li, Acta Mater. 56, 6304 (2008).

    Google Scholar 

  47. H. Hirakata, Y. Takahashi, S. Matsumoto, T. Kitamura, Eng. Fract. Mech. 73, 2698 (2006).

    Google Scholar 

  48. H. Hirakata, T. Kitamura, Y. Yamamoto, JSME Int. J., Ser. A 47, 324 (2004).

    Google Scholar 

  49. H. Hirakata, Y. Takahashi, D. Van Truong, T. Kitamura, Int. J. Fract. 145, 261 (2007).

    Google Scholar 

  50. T. Sumigawa, H. Hirakata, M. Takemura, S. Matsumoto, M. Suzuki, T. Kitamura, Eng. Fract. Mech. 75, 3073 (2008).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Chasiotis, I. & Kitamura, T. In Situ Scanning Probe Microscopy Nanomechanical Testing. MRS Bulletin 35, 361–367 (2010). https://doi.org/10.1557/mrs2010.568

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.568

Navigation