Skip to main content
Log in

Development of Bulk GaN Crystals and Nonpolar/Semipolar Substrates by HVPE

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The remarkable progress in nonpolar and semipolar devices based on gallium nitride (GaN) in recent years has been driven by not only advancements in the epitaxial growth technique but also improvements in the quality of bulk nonpolar and semipolar GaN substrates. At present, high-quality nonpolar/semipolar substrates are only made by slicing thick bulk GaN crystals grown by hydride vapor-phase epitaxy (HVPE). Although HVPE is currently the most successful method for obtaining high-quality bulk GaN crystals, it is still difficult to obtain uniform crystals with large diameters and thicknesses. The size of the nonpolar/semipolar substrates has been limited by the growth thickness along the c-axis of bulk GaN crystals. Here we review the growth of bulk GaN crystals by HVPE to achieve high-quality and large-sized nonpolar and semipolar substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Oshima, T. Yoshida, T. Eri, M. Shibata, T. Mishima, Phys. Status Solidi C 4, 2215 (2007).

    Google Scholar 

  2. H. Shibata, Y. Waseda, H. Ohta, K. Kiyomi, K. Shimoyma, K. Fujito, H. Nagaoka, Y. Kagamitani, R. Simura, T. Fukuda, Mater. Trans. 48, 2782 (2007).

    Google Scholar 

  3. H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).

    Google Scholar 

  4. K. Motoki, T. Okahisa, N. Matsumoto, M. Matsushita, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, T. Hirano, M. Nakayama, S. Nakahata, M. Ueno, D. Hara, Y. Kumagai, A. Koukitsu, H. Seki, Jpn. J. Appl. Phys. 40, L140 (2001).

    Google Scholar 

  5. K. Fujito, S. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, S. Nagao, J. Cryst. Growth (2009), doi:10.1016/j.jcrysgro.2009. 01.046.

  6. Y. Kumagai, A. Koukitsu, H. Seki, Jpn. J. Appl. Phys. 39, L149 (2000).

    Google Scholar 

  7. A. Wakahara, T. Yamamoto, K. Ishio, A. Yoshida, Y. Seki, K. Kainosho, O. Oda, Jpn. J. Appl. Phys. 39, 2399 (2000).

    Google Scholar 

  8. O. Kryliouk, M. Reed, T. Dann, T. Anderson, B. Chai, Mater. Sci. Eng. B 66, 26 (1999).

    Google Scholar 

  9. Yu. Melnik, A. Nikolaev, I. Nikitina, K. Vassilevski, V. Dmitriev, Mater. Res. Soc. Symp. Proc. 482, 269 (1998).

    Google Scholar 

  10. S.T. Kim, Y.J. Lee, S.H. Chung, D.C. Moon, J. Korean Phys. Soc. 33, S313 (1998).

    Google Scholar 

  11. M.K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, M. Stutzmann, Phys. Status Solidi A 159, R3 (1997).

    Google Scholar 

  12. S.S. Park, I. Park, S.H. Choh, Jpn. J. Appl. Phys. 39, L1141 (2000).

    Google Scholar 

  13. Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi, A. Usui, Jpn. J. Appl. Phys. 42, L1 (2003).

    Google Scholar 

  14. A.D. Williams, T.D. Moustakas, J. Cryst. Growth 300, 37 (2007).

    Google Scholar 

  15. S. Porowski, MRS Internet J. Nitride Semicond. Res. 4S1, G1.3 (1999).

    Google Scholar 

  16. T. Inoue, Y. Seki, O. Oda, S. Kurai, Y. Yamada, T. Taguchi, Phys. Status Solidi B 223 15 (2001).

    Google Scholar 

  17. H. Yamane, M. Shimada, T. Sekiguchi, F.J. DiSalvo, J. Cryst. Growth 186, 8 (1998).

    Google Scholar 

  18. F. Kawamura, M. Morishita, K. Omae, M. Yoshimura, Y. Mori, T. Sasaki, Jpn. J. Appl. Phys. 42, L879 (2003).

    Google Scholar 

  19. R. Dwiliński, R. Doradziński, J. Garczyński, L. Sierzputowski, J.M. Baranowski, M. Kamińska, Diamond Relat. Mater. 7, 1348 (1998).

    Google Scholar 

  20. T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, Jpn. J. Appl. Phys. 46, L889 (2007).

    Google Scholar 

  21. T. Paskova, R. Kroeger, S. Figge, D. Hommel, V. Darakchieva, B. Monemar, E. Preble, A. Hanser, N.M. Williams, M. Tutor, Appl. Phys. Lett. 89, 051914 (2006).

    Google Scholar 

  22. D. Hanser, L. Liu, E.A. Preble, K. Udwary, T. Paskova, K.R. Evans, J. Cryst. Growth 310, 3953 (2008).

    Google Scholar 

  23. M. Weyers, E. Richter, C. Hennig, S. Hagedorn, T. Wernicke, G. Tränkle, Proc. of SPIE 6910, 69100I (2008).

    Google Scholar 

  24. B. Lucznik, B. Pastuszka, I. Grzegory, M. Boćkowski, G. Kamler, E. Litwin-Staszewska, S. Porowski, J. Cryst. Growth 281, 38 (2005).

    Google Scholar 

  25. B.A. Haskell, F. Wu, S. Matsuda, M.D. Craven, P.T. Fini, S.P. DenBaars, J.S. Speck, S. Nakamura, Appl. Phys. Lett. 83, 1554 (2003).

    Google Scholar 

  26. B.A. Haskell, A. Chakaraborty, F. Wu, H. Sasano, P.T. Fini, S.P. Denbaars, J.S. Speck, S. Nakamura, J. Electron. Mater. 34, 357 (2005).

    Google Scholar 

  27. B.A. Haskell, F. Wu, M.D. Craven, S. Matsuda, P.T. Fini, T. Fujii, K. Fujito, S.P. DenBaars, J.S. Speck, S. Nakamura, Appl. Phys. Lett. 83, 644 (2003).

    Google Scholar 

  28. B.A. Haskell, T.J. Baker, M.B. McLaurin, F. Wu, P.T. Fini, S.P. DenBaars, J.S. Speck, S. Nakamura, Appl. Phys. Lett. 86, 111917 (2005).

    Google Scholar 

  29. T.J. Baker, B.A. Haskell, F. Wu, P.T. Fini, J.S. Speck, S. Nakamura, Jpn. J. Appl. Phys. 44, L920 (2005).

    Google Scholar 

  30. K. Fujito, K. Kiyomi, T. Mochizuki, H. Oota, H. Namita, S. Nagao, I. Fujimura, Phys. Status Solidi A 205, 1056 (2008).

    Google Scholar 

  31. K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, T. Maeda, Phys. Status Solidi A 176, 535 (1999).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujito, K., Kubo, S. & Fujimura, I. Development of Bulk GaN Crystals and Nonpolar/Semipolar Substrates by HVPE. MRS Bulletin 34, 313–317 (2009). https://doi.org/10.1557/mrs2009.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.92

Navigation