Skip to main content
Log in

Assembled Semiconductor Nanowire Thin Films for High-Performance Flexible Macroelectronics

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

A new concept of macroelectronics using assembled semiconductor nanowire thin films holds the promise of significant performance improvement. In this new concept, a thin film of oriented semiconductor nanowires is used to produce thin-film transistors (TFTs) with conducting channels formed by multiple parallel single-crystal nanowire paths. There fore, charges travel from source to drain within single crystals, ensuring high carrier mobility. Recent studies have shown that high-performance silicon nanowire TFTs and high-frequency circuits can be readily produced on a variety of substrates including glass and plastics using a solution assembly process. The device performance of these nanowire TFTs not only greatly surpasses that of solution-processed organic TFTs, but is also significantly better than that of conventional amorphous or polycrystalline silicon TFTs, approaching single-crystal silicon-based devices. Furthermore, with a similar frame-work, Group III-V or II-VI nanowire or nanoribbon materials of high intrinsic carrier mobility or optical functionality can be assembled into thin films on flexible substrates to enable new multifunctional electronics/optoelectronics that are not possible with traditional macroelectronics. This can have an impact on a broad range of existing applications, from flat-panel displays to image sensor arrays, and enable a new generation of flexible, wearable, or disposable electronics for computing, storage, and wireless communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. P. Gelsinger, P.A. Gargini, G.H. Parker, and A.Y.C. Yu, IEEE Spectrum (October 1989) p. 43.

  2. J.D. Meindl, Q. Chen, and J.A. Davis, Science 293 (2001) p. 2044.

    Google Scholar 

  3. R.H. Reuss, D.G. Hopper, and J.G. Park, MRS Bull. 31 (June 2006) p. 447.

    Google Scholar 

  4. M.S. Shur, P. Wilson, and D. Urban, eds., Mater. Res. Soc. Symp. Proc. 736 (Materials Research Society, Warrendale, PA, 2002).

    Google Scholar 

  5. S. Uchikoga, MRS Bull. 27 (November 2002) p. 881.

    Google Scholar 

  6. R.A. Street, Technology and Applications of Amorphous Silicon (Springer, Berlin, 2000).

    Google Scholar 

  7. J.A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V.R. Raju, V. Kuck, H. Katz, K. Amundson, J. Edwing, and P. Drzaic, Proc. Natl. Acad. Sci. USA 98 (2001) p. 4835.

    Google Scholar 

  8. F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, Science 265 (1994) p. 1684.

    Google Scholar 

  9. B. Crone, A. Dodabalapur, Y. Y. Lin, R.W. Fillas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. Katz, and W. Li, Nature 403 (2000) p. 521.

    Google Scholar 

  10. C.D. Dimitrakopoulos and D.J. Mascaro, IBM J. Res. Dev. 45 (2001) p. 11.

    Google Scholar 

  11. B.A. Ridley, B. Nivi, and J.M. Jacobson, Science 286 (1999) p. 746.

    Google Scholar 

  12. D.V. Talapin and C.B. Murray, Science 310 (2005) p. 86.

    Google Scholar 

  13. C.R. Kagan, D.B. Mitzi, and C.D. Dimitrakopoulos, Science 286 (1999) p. 945.

    Google Scholar 

  14. D.B. Mitzi, K. Chondroudis, and C.R. Kagan, IBM J. Res. Dev. 45 (2001) p. 29.

    Google Scholar 

  15. Y. Cui, Z. Zhong, D. Wang, W. Wang, and C.M. Lieber, Nano Lett. 3 (2003) p. 149.

    Google Scholar 

  16. X. Duan, Y. Huang, Y. Cui, and C.M. Lieber, Molecular Nanoelectronics, edited by M.A. Reed and T. Lee (American Scientific Publishers, Stevenson Ranch, Calif., 2003) p. 199.

    Google Scholar 

  17. S.J. Tans, R.M. Verschueren, and C. Dekker, Nature 393 (1998) p. 49.

    Google Scholar 

  18. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett. 73 (1998) p. 2447.

    Google Scholar 

  19. S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, and P.L. McEuen, Nano Lett. 2 (2002) p. 869.

    Google Scholar 

  20. X. Duan, C. Niu, V. Sahi, J. Chen, J.W. Parce, S. Empedocles, and J.L. Goldman, Nature 425 (2003) p. 274.

    Google Scholar 

  21. S. Jin, D. Whang, M.C. McAlpine, R.S. Friedman, Y. Wu, and C.M. Lieber, Nano Lett. 4 (2004) p. 915.

    Google Scholar 

  22. E. Menard, K.J. Lee, D. - Y. Khang, R.G. Nuzzo, and J.A. Rogers, Appl. Phys. Lett. 84 (2004) p. 5398.

    Google Scholar 

  23. X. Duan, Y. Huang, J. Wang, Y. Cui, and C.M. Lieber, Nature 409 (2001) p. 66.

    Google Scholar 

  24. Y. Huang, X. Duan, Q. Wei, and C.M. Lieber, Science 291 (2001) p. 630.

    Google Scholar 

  25. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, Nano Lett. 3 (2003) p. 1251.

    Google Scholar 

  26. D. Whang, S. Jin, Y. Wu, and C.M. Lieber, Nano Lett. 3 (2003) p. 1255.

    Google Scholar 

  27. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  28. T. Mizuno, N. Sugiyama, A. Kurobe, and S. Takagi, IEEE Trans. Electron. Dev. 48 (2001) p. 1612.

    Google Scholar 

  29. A. Hara, M. Takei, F. Takeuchi, K. Suga, K. Yoshino, M. Chida, T. Kakehi, Y. Ebiko, Y. Sano, and N. Sasaki, Jpn. J. Appl. Phys. Pt. 1 43 (2004) p. 1269.

    Google Scholar 

  30. X. Duan, unpublished results.

  31. E.S. Snow, P.M. Campbell, M.G. Ancona, and J.P. Novak, Appl. Phys. Lett. 86 033105 (2005).

    Google Scholar 

  32. M.C. McAlpine, R.S. Friedman, S. Jin, K. Lin, W.U. Wang, and C.M. Lieber, Nano Lett. 3 (2003) p. 1531.

    Google Scholar 

  33. Y. Sun, E. Menard, J.A. Rogers, H.-S. Kim, S. Kim, G. Chen, I. Adesida, R. Dettmer, R. Cortez, and A. Tewksbury, Appl. Phys. Lett. 88 183509 (2006).

    Google Scholar 

  34. X. Duan and C.M. Lieber, Adv. Mater. 12 (2000) p. 298.

    Google Scholar 

  35. Y. Huang, X. Duan, Y. Cui, and C.M. Lieber, Nano Lett. 2 (2002) p. 101.

    Google Scholar 

  36. H. Sakaki, Surf. Sci. 267 (1992) p. 623.

    Google Scholar 

  37. L.J. Lauhon, M.S. Gudiksen, D. Wang, and C.M. Lieber, Nature 420 (2002) p. 57.

    Google Scholar 

  38. W. Lu, J. Xiang, B.P. Timko, Y. Wu, and C.M. Lieber, Proc. Natl. Acad. Sci. USA 102 (2005) p. 10046.

    Google Scholar 

  39. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C.M. Lieber, Nature 441 (2006) p. 489.

    Google Scholar 

  40. Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D.A. Blom, and C.M. Lieber, Nano Lett. 6 (2006) p. 1468.

    Google Scholar 

  41. Y. Huang, X. Duan, and C.M. Lieber, Small 1 (2005) p. 142.

    Google Scholar 

  42. Y. Huang and C.M. Lieber, Pure Appl. Chem. 76 (2004) p. 2051.

    Google Scholar 

  43. F. Qian, S. Gradecak, Y. Li, C. Wen, and C.M. Lieber, Nano Lett. 5 (2005) p. 2287.

    Google Scholar 

  44. Z. Pan, Z. Dai, and Z.-L. Wang, Science 291 (2001) p. 1947.

    Google Scholar 

  45. X. Duan, Y. Huang, R. Argarawal, and C.M. Lieber, Nature 421 (2003) p. 241.

    Google Scholar 

  46. P.K. Weimer, Proc. IEEE 56 (1962) p. 1462.

    Google Scholar 

  47. S. Mack, M. Meitl, A. Baca, Z.-T. Zhu, and J.A. Rogers, Appl. Phys. Lett. 88 213101 (2006).

    Google Scholar 

  48. Y. Sun, D.-Y. Khang, K. Hurley, R.G. Nuzzo, and J.A. Rogers, Adv. Funct. Mater. 15 (2005) p. 30.

    Google Scholar 

  49. K. Lee, J. Lee, H. Hwang, Z. Reitmeier, R.F. Davis, J.A. Rogers, and R.G. Nuzzo, Small 1 (2005) p. 1164.

    Google Scholar 

  50. R.S. Friedman, M.C. McAlpine, D.S. Ricketts, D. Ham, and C.M. Lieber, Nature 434 (2005) p. 1085.

    Google Scholar 

  51. W. Clemens, W. Fix, J. Ficker, A. Knoblock, and A. Ullmann, J. Mater. Res. 19 (2004) p. 1963.

    Google Scholar 

  52. K. Hiranaka, T. Yamaguchi, and S. Yanagisawa, IEEE Electron Dev. Lett. 7 (1984) p. 224.

    Google Scholar 

  53. Y. Mishima, K. Yoskino, F. Takeuchi, K. Ohgata, M. Takei, and N. Sasaki, IEEE Electron Dev. Lett. 22 (2001) p. 89.

    Google Scholar 

  54. J.S. Becker, S. Suh, and R.G. Gordon, Chem. Mater. 15 (2003) p. 2969.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, X. Assembled Semiconductor Nanowire Thin Films for High-Performance Flexible Macroelectronics. MRS Bulletin 32, 134–141 (2007). https://doi.org/10.1557/mrs2007.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.46

Navigation