Skip to main content
Log in

Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic Nanoshells

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nanoshells, concentric nanoparticles consisting of a dielectric core and a metallic shell, are simple spherical nanostructures with unique, geometrically tunable optical resonances. As with all metallic nanostructures, their optical properties are controlled by the collective electronic resonance, or plasmon resonance, of the constituent metal, typically silver or gold. In striking contrast to the resonant properties of solid metallic nanostructures, which exhibit only a weak tunability with size or aspect ratio, the optical resonance of a nanoshell is extraordinarily sensitive to the inner and outer dimensions of the metallic shell layer. The underlying reason for this lies beyond classical electromagnetic theory, where plasmon-resonant nanoparticles follow a mesoscale analogue of molecular orbital theory, hybridizing in precisely the same manner as the individual atomic wave functions in simple molecules. This plasmon hybridization picture provides an essential “design rule” for metallic nanostructures that can allow us to effectively predict their optical resonant properties. Such a systematic control of the far-field optical resonances of metallic nanostructures is accomplished simultaneously with control of the field at the surface of the nanostructure. The nanoshell geometry is ideal for tuning and optimizing the near-field response as a stand-alone surface-enhanced Raman spectroscopy (SERS) nanosensor substrate and as a surface-plasmon-resonant nanosensor.Tuning the plasmon resonance of nanoshells into the near-infrared region of the spectrum has enabled a variety of biomedical applications that exploit the strong optical contrast available with nanoshells in a spectral region where blood and tissue are optimally transparent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.R. Jana, L. Gearheart, and C.J. Murphy, J. Phys. Chem. B 105 (2001) p. 4065.

    Google Scholar 

  2. M. Maillard, S. Giorgio, and M.P. Pileni, J. Phys. Chem. B 107 (2003) p. 2466.

    Google Scholar 

  3. J. Aizpurua, P. Hanarp, D.S. Sutherland, M. Kall, G.W. Bryant, and F.J. Garcia de Abajo, Phys. Rev. Lett. 90 057401 (2003).

    Google Scholar 

  4. C. Charnay, A. Lee, S. Man, C.E. Moran, C. Radloff, R.K. Bradley, and N.J. Halas, J. Phys. Chem. B 107 (2003) p. 7327.

    Google Scholar 

  5. Y. Sun and Y. Xia, Science 298 (2002) p. 2176.

    Google Scholar 

  6. K.L. Kelly, C. Eduardo, L.L. Zhao, and G.C. Schatz, J. Phys. Chem. B 107 (2003) p. 668.

    Google Scholar 

  7. S.A. Maier, M.L. Brongersma, P.G. Kik, and H.A. Atwater, Phys. Rev. B 193408 65 (2002).

    Google Scholar 

  8. E. Prodan and P. Nordlander, Chem. Phys. Lett. 352 (2002) p. 140.

    Google Scholar 

  9. C. Oubre, and P. Nordlander, J. Phys. Chem. B 108 (2004) p. 17740.

    Google Scholar 

  10. G. Mie, Annalen der Physik 25 (1908) p. 377.

    Google Scholar 

  11. Y.-Y. Yu, S.S. Chang, C.-L. Lee, and C.R.C. Wang, J. Phys. Chem. B 101 (1997) p. 6661.

    Google Scholar 

  12. S.J. Oldenburg, R.D. Averitt, S. Westcott, and N.J. Halas, Chem. Phys. Lett. 288 (1998) p. 243.

    Google Scholar 

  13. A.L. Aden and Kerker, J. App. Phys. 22 (1951) p. 1242.

    Google Scholar 

  14. R.D. Averitt, D. Sarkar, and N.J. Halas, Phys. Rev. Lett. 78 (1997) p. 4217.

    Google Scholar 

  15. J.B. Jackson and N.J. Halas, J. Phys. Chem. B 105 (2001) p. 2743.

    Google Scholar 

  16. S.J. Oldenburg, J.B. Jackson, S.L. Westcott, and N.J. Halas, App. Phys. Lett. 75 (1999) p. 2897.

    Google Scholar 

  17. E. Prodan, C. Radloff, N.J. Halas, and P. Nordlander, Science 302 (2003) p. 419.

    Google Scholar 

  18. C. Radloff and N.J. Halas, Nano Lett. 4 (2004) p. 1323.

    Google Scholar 

  19. W. Stober, A. Fink, and E. Bohn, J. Coll. Inter. Sci. 26 (1968) p. 62.

    Google Scholar 

  20. S.J. Oldenburg, G.D. Hale, J.B. Jackson, and N.J. Halas, App. Phys. Lett. 75 (1999) p. 1063.

    Google Scholar 

  21. V.J. Klimov, Los Alamos Sci. 28 (2003) p. 214.

    Google Scholar 

  22. D.L. Jeanmarie and R.P. Van Duyne, J. Electroanal. Chem. 84 (1977) p. 1.

    Google Scholar 

  23. R.C. Maher, L.F. Cohen, P. Etchegoin, H.J.N. Hartigan, R.J.C. Brown, and M.J.T. Milton, J. Chem. Phys. 120 (2004) p. 11746.

    Google Scholar 

  24. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R.R. Dasar, and M.S. Feld, M. S. Phys. Rev. Lett. (1996) p. 2444.

  25. A.M. Michaels, J. Jiang, and L. Brus, J. Phys. Chem. B 104 (2000) p. 11965.

    Google Scholar 

  26. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld, Phys. Rev. Lett. 78 (1997) p. 1667.

    Google Scholar 

  27. S. Nie and S.R. Emory, Science 275 (1997) p. 1102.

    Google Scholar 

  28. K. Li, M.I. Stockman, and D.J. Bergman, Phys. Rev. Lett. 91 (2003) p. 227402.

    Google Scholar 

  29. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, J. Phys. Chem. B 107 (2003) p. 9964.

    Google Scholar 

  30. L. Gunnarson, E.J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kall, App. Phys. Lett. 78 (2001) p. 802.

    Google Scholar 

  31. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M.I. Stockman, Nano Lett. 4 (2004) p. 899.

    Google Scholar 

  32. E. Prodan and P. Nordlander, J. Chem. Phys. 120 (2004) p. 5444.

    Google Scholar 

  33. J.B. Jackson, L.R. Hirsch, J.L. West, and N.J. Halas, App. Phys. Lett. 82 (2003) p. 257.

    Google Scholar 

  34. J.B. Jackson and N.J. Halas, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) p. 17930.

    Google Scholar 

  35. Y. Sun and Y. Xia, Anal. Chem. 74 (2002) p. 5297.

    Google Scholar 

  36. E. Prodan, A. Lee, and P. Nordlander, Chem. Phys. Lett. 360 (2002) p. 325.

    Google Scholar 

  37. F. Tam, C. Moran, and N.J. Halas, J. Phys. Chem. B 108 (2004) p. 17290.

    Google Scholar 

  38. A.S. Hoffman, A. Afrassiabi, and L.C. Dong, J. Controlled Release 4 (1986) p. 213.

    Google Scholar 

  39. L.C. Dong and A.S. Hoffman, J. Controlled Release 4 (1986) p. 223.

    Google Scholar 

  40. S.R. Sershen, S.L. Westcott, N.J. Halas, and J.L. West, J. Biomed. Mater. Res. 51 (2000) p. 293.

    Google Scholar 

  41. S. Sershen, S. Westcott, N.J. Halas, and J.L. West, App. Phys. Lett. 80 (2002) p. 4609.

    Google Scholar 

  42. L.R. Hirsch, J.B. Jackson, A. Lee, N.J. Halas, and J.L. West, Anal. Chem. 75 (2003) p. 2377.

    Google Scholar 

  43. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S. Sershen, R.E. Price, J.D. Hazle, N.J. Halas, and J.L. West, Proc. Natl. Acad. Sci. U.S.A. 100 (2003) p. 13549.

    Google Scholar 

  44. C.H. Loo, A. Lin, L.R. Hirsch, M.-H. Lee, J. Barton, N.J. Halas, J.L. West, and R. Drezek, Tech. Cancer Therapy Treatment 3 (2004) p. 33.

    Google Scholar 

  45. P. O’Neal, L.R. Hirsch, N.J. Halas, J.D. Payne, and J.L. West, Cancer Lett. 209 (2004) p. 171.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halas, N. Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic Nanoshells. MRS Bulletin 30, 362–367 (2005). https://doi.org/10.1557/mrs2005.99

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.99

Keywords

Navigation