Skip to main content

Advertisement

Log in

Expanding Frontiers in Biomaterials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article celebrating Arthur von Hippel’s career considers the expanding frontiers in the field of biomaterials, a subject that intrigued him given his interests in the molecular engineering of materials. The interface of materials science and biology started to develop decades ago when synthetic materials were first used to repair parts of the human body. An exciting transformation is now occurring in the field, as advances in biology are used to engineer bioactive materials at the molecular level.The transformation is going further to other frontiers that include the use of sophisticated materials to obtain biological information and learn biology, the creation of materials that imitate biological microstructures and functions, and the manipulation of organisms to create artificial materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. von Hippel, Mater. Res. Bull. 14 (1979) p. 273.

    Article  Google Scholar 

  2. B.D. Ratner, Biomaterials Science: An Introduction to Materials in Medicine (Elsevier Academic Press, San Diego, 2004).

    Google Scholar 

  3. D.G. Anderson, J.A. Burdick, and R. Langer, Science 305 (2004) p. 1923.

    Article  CAS  Google Scholar 

  4. L.L. Hench and E.C. Ethridge, Biomaterials: An Interfacial Approach (Academic Press, San Diego, 1982).

    Google Scholar 

  5. S. Dumitriu, ed., Polymeric Biomaterials, 2nd ed. (Marcel Dekker, New York, 2002).

    Google Scholar 

  6. J.D. Bronzio, The Biomedical Engineering Handbook (CRC Press, Boca Raton, Fla., 1995).

    Google Scholar 

  7. H.P. Williams, Br. J. Ophthalmol. 85 (9) (2001) p. 1022.

    Article  CAS  Google Scholar 

  8. R.A. DeWall, N. Qasim, and L. Carr, Ann. Thorac. Surg. 69 (2000) p. 1612.

    Article  CAS  Google Scholar 

  9. S.I. Stupp, MRS Bull. 30 (7) (2005) p. 546.

    Article  CAS  Google Scholar 

  10. E. Beniash, J.D. Hartgerink, H. Storrie, J.C. Stendahl, and S.I. Stupp, Acta Biomater. 1 (2005) p. 385.

    Article  Google Scholar 

  11. S. Sarkar, M. Dadhania, P. Rourke, T.A. Desai, and J.Y. Wong, Acta Biomater. 1 (2005) p. 93.

    Article  Google Scholar 

  12. M. Shin, K. Matsuda, O. Ishii, H. Terai, M. Kaazempur-Mofrad, J. Borenstein, M. Detmar, and J.P. Vacanti, Biomed. Microdevices 6 (4) (2004) p. 269.

    Article  CAS  Google Scholar 

  13. H. Storrie and S.I. Stupp, Biomaterials 26 (2005) p. 5492.

    Article  CAS  Google Scholar 

  14. R. Furstner, W. Barthlott, and P. Walzel, Langmuir 21 (2005) p. 956.

    Article  CAS  Google Scholar 

  15. S.C.S Lai, “Mimicking Nature: Physical Basis and Artificial Synthesis of the Lotus-Effect,” Universiteit Leiden (August 2003), home.wanadoo.nl/scslai/lotus.pdf (accessed September 2005.)

    Google Scholar 

  16. Photograph of a water lily, www.chiba-u.ac.jp/JP/gakuseibu/kyoumuka/original/lot us-2.jpg (accessed September 2005).

  17. A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, and S.Y. Shapo-val, Nature Mater. Lett. (2003) p. 461.

    Google Scholar 

  18. “How Geckos Stick to Walls,” www.lclark.edu/,autumn/private/u38j47a0t/ (accessed September 2005).

  19. J. Aizenberg, Adv. Mater. 16 (2004) p. 1295.

    Article  CAS  Google Scholar 

  20. The Whitaker Foundation, “Imaging Prostate Cancer with Quantum Dots,” www.whitaker.org/news/nie2.html (accessed September 2005).

  21. Office of Naval Research, “Image Gallery: General Science and Technology,” www.onr.navy.mil/media/gallery._category.asp?Cat general (accessed September 2005).

  22. X. Wu, H. Liu, J. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N. Ge, F. Peale, and M.P. Bruchez, Nature Biotech. 21 (2003) p. 41.

    Article  CAS  Google Scholar 

  23. N.L. Rosi and C.A. Mirkin, Chem. Rev. 105 (2005) p. 1547.

    Article  CAS  Google Scholar 

  24. J.T. Groves, Angew. Chem. Int. Ed. 44 (2005) p. 3524.

    Article  CAS  Google Scholar 

  25. A. Brock, E. Chang, C.C. Ho, P. LeDuc, X. Jiang, G.M. Whitesides, D.E. Ingber, Langmuir 19 (2003) p. 1611.

    Article  CAS  Google Scholar 

  26. J.L. Tan, J. Tien, D. Pirone, D.S. Gray, and C.S. Chen, Proc. Natl. Acad. Sci. USA 100 (2003) p. 1484.

    Article  CAS  Google Scholar 

  27. C. Mao, D.J. Solis, B.D. Reiss, S.T. Kottmann, R.Y. Sweeney, A. Hayhurst, G. Georgiou, B. Iverson, and A.M. Belcher, Science 303 (2004) p. 213.

    Article  CAS  Google Scholar 

  28. S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, and A.M. Belcher, Nature 405 (2000) p. 665.

    Article  CAS  Google Scholar 

  29. J. Cappello, J. Crissman, M. Dorman, M. Mikolajczak, G. Textor, M. Marquet, and F. Ferrari, Biotechnol. Progr. 6 (1990) p. 198.

    Article  CAS  Google Scholar 

  30. E.D. Spoerke and S.I. Stupp, Biomaterials 26 (2005) p. 5120.

    Article  CAS  Google Scholar 

  31. E.D. Spoerke and S.I. Stupp, J. Biomed. Mater. Res. 67A (2003) p. 960.

    Article  CAS  Google Scholar 

  32. R.P. Lanza, R. Langer, and J. Vacanti, Principles of Tissue Engineering (Academic Press, San Diego, 2000).

    Google Scholar 

  33. T.P. Richardson, M.C. Peters, A.B. Ennett, and D.J. Mooney, Nature Biotech. 19 (2001) p. 1029.

    Article  CAS  Google Scholar 

  34. A. Mata, doctoral dissertation, Cleveland State University (2005).

  35. A. Mata, A.J. Fleischman, and S. Roy, “Microfabricated 3D Scaffolds for Tissue Engineering Applications,” in Nanoscale Materials Science in Biology and Medicine, edited by C.T. Laurencin and E.A. Botchwey (Mater Res. Soc. Symp. Proc. 845, Warrendale, PA, 2005) p. AA4.3.1.

  36. W. Tan and T.A. Desai, Biomaterials 25 (2004) p. 1355.

    Article  CAS  Google Scholar 

  37. A. Folch, S. Mezzour, M. During, O. Hurtado, M. Toner, and R. Muller, Biomed. Microdevices 2 (3) (2000) p. 207.

    Article  Google Scholar 

  38. A. Mata, A.J. Fleischman, and S. Roy, Proc. Am. Soc. Precision Eng. Spring Topical Meeting on Precision Micro/Nano-Scale Polymer-Based Component and Device Fabrication, Vol. 35 (2005) p. 15.

    Google Scholar 

  39. A. Lendlein and R. Langer, Science 296 (2002) p. 1673.

    Article  Google Scholar 

  40. J. Yang, M. Yamato, and T. Okano, MRS Bull. 30 (3) (2005) p. 189.

    Article  CAS  Google Scholar 

  41. K. Nishida, M. Yamato, Y. Hayashida, K. Watanabe, N. Maeda, H. Watanabe, K. Yamamoto, S. Nagai, A. Kikuchi, Y. Tano, and T. Okano, Transplantation 77 (2004) p. 379.

    Article  Google Scholar 

  42. T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, Circ. Res. 90 (2002) p. e40.

    Article  CAS  Google Scholar 

  43. J. Lahann and R. Langer, MRS Bull. 30 (3) (2005) p. 185.

    Article  CAS  Google Scholar 

  44. J.D. Hartgerink, E. Beniash, and S.I. Stupp, Science 294 (2001) p. 1684.

    Article  CAS  Google Scholar 

  45. G.A. Silva, C. Czeisler, K.L. Niece, E. Beniash, D. Harrington, J.A. Kessler, and S.I. Stupp, Science 303 (2004) p. 1352.

    Article  CAS  Google Scholar 

  46. J.D. Hartgerink, E. Beniash, and S.I. Stupp, Proc. Natl. Acad. Sci. USA 99 (2002) p. 5133.

    Article  CAS  Google Scholar 

  47. K.L. Niece, J.D. Hartgerink, J. Donners, and S.I. Stupp, J. Am. Chem. Soc. 125 (2003) p. 7146.

    Article  CAS  Google Scholar 

  48. R.F. Service, Science 308 (2005) p. 44.

    CAS  Google Scholar 

  49. J.-M. Lehn, Les Prix Nobel (1988) p. 129.

    Google Scholar 

  50. H.A. Behanna, J. Donners, A.C. Gordon, and S.I. Stupp, J. Am. Chem. Soc. 127 (2005) p. 1193.

    Article  CAS  Google Scholar 

  51. S.R. Bull, M.O. Guler, R.E. Bras, T.J. Meade, and S.I. Stupp, Nano Lett. 5 (2005) p. 1.

    Article  CAS  Google Scholar 

  52. M.O. Guler, J.K. Pokorski, D.H. Appella, and S.I. Stupp, Bioconjug. Chem., 16 (2005) p. 501.

    Article  CAS  Google Scholar 

  53. R. Spolenak, G. Stanislav, and E. Arzt, Acta Biomater. 1 (2005) p. 5.

    Article  Google Scholar 

  54. K. Autumn and A.M. Peattie, Integr. Comp. Biol. 42 (2002) p. 1081.

    Article  Google Scholar 

  55. R. Breslow, Chem. Rec. (2000) p. 3.

    Google Scholar 

  56. D. Kisailus, M. Najarian, J.C. Weaver, and D.E. Morse, Adv. Mater. 17 (2005) p. 1234.

    Article  CAS  Google Scholar 

  57. C. Du, G. Falini, S. Fermani, C. Abbott, and J. Moradian-Oldak, Science 307 (2005) p. 1450.

    Article  CAS  Google Scholar 

  58. N.C. Seeman, Trends Biochem. Sci. 30 (2005) p. 119.

    Article  CAS  Google Scholar 

  59. C.M. Niemeyer, Curr. Opin. Chem. Biol. 4 (2000) p. 609.

    Article  CAS  Google Scholar 

  60. E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman, Nature 394 (1998) p. 539.

    Article  CAS  Google Scholar 

  61. C. Mao, W. Sun, and N.C. Seeman, Nature 386 (1997) p. 137.

    Article  CAS  Google Scholar 

  62. J. Chen and N.C. Seeman, Nature 350 (1991) p. 631.

    Article  CAS  Google Scholar 

  63. C. Mao, W. Sun, Z. Shen, and N.C. Seeman, Nature 397 (1999) p. 144.

    Article  CAS  Google Scholar 

  64. H. Yan, X. Zhang, Z. Shen, and N.C. Seeman, Nature 415 (2002) p. 62.

    Article  CAS  Google Scholar 

  65. M.G. Warner and J.E. Hutchison, Nature Mater. 2 (2003) p. 272.

    Article  CAS  Google Scholar 

  66. H. Nakao, H. Shiigi, Y. Yamamoto, S. Tokonami, T. Nagaoka, S. Sugiyama, and T. Ohtani, Nano Lett. 3 (2003) p. 1391.

    Article  CAS  Google Scholar 

  67. L.-S. Li and S.I. Stupp, Angew. Chem. Int. Ed. 44 (2005) p. 1833.

    Article  CAS  Google Scholar 

  68. S. Yang, G. Chen, M. Megens, C.K. Ullal, Y.J. Han, R. Rapaport, E.L Thomas, and J. Aizenberg, Adv. Mater., 17 (4) (2005) p. 435.

    Article  CAS  Google Scholar 

  69. P. Alivisatos, Nature Biotechnol. 22 (2004) p. 47.

    Article  CAS  Google Scholar 

  70. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos, Science 281 (1998) p. 2013.

    Article  CAS  Google Scholar 

  71. W.C.W Chan and S. Nie, Science 281 (1998) p. 2016.

    Article  CAS  Google Scholar 

  72. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, and S. Weiss, Science 307 (2005) p. 538.

    Article  CAS  Google Scholar 

  73. I.L. Medintz, H.T. Uyeda, E.R. Goldman, and H. Mattoussi, Nature Mater. 4 (2005) p. 435.

    Article  CAS  Google Scholar 

  74. S. Kim, Y.T. Lim, E.G. Soltesz, A.M. De Grand, J. Lee, A. Nakayama, J.A. Parker, T. Mihaljevic, R.G. Laurence, D.M. Dor, L.H. Cohn, M.G. Bawendi, and J.V. Frangioni, Nature Biotechnol. 22 (2004) p. 93.

    Article  CAS  Google Scholar 

  75. T.A. Taton, C.A. Mirkin, and R.L. Letsinger, Science 289 (2000) p. 1757.

    Article  CAS  Google Scholar 

  76. C.S. Thaxton, N.L. Rosi, and C.A. Mirkin, MRS Bull. 30 (5) (2005) p. 376.

    Article  CAS  Google Scholar 

  77. R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, and C.A. Mirkin, Science 277 (1997) p. 1078.

    Article  CAS  Google Scholar 

  78. Y.W.C Cao, R.C. Jin, and C.A. Mirkin, Science 297 (2002) p. 1536.

    Article  CAS  Google Scholar 

  79. J.B. Jackson, S.L. Westcott, L.R. Hirsch, J.L. West, and N.J. Halas, Appl. Phys. Lett. 82 (2003) p. 257.

    Article  CAS  Google Scholar 

  80. L.R. Hirsch, J.B. Jackson, A. Lee, N.J. Halas, and J. West, Anal. Chem. 75 (2003) p. 2377.

    Article  CAS  Google Scholar 

  81. J.-M. Nam, S. Stoeva, and C.A. Mirkin, J. Am. Chem. Soc. 126 (2004) p. 5932.

    Article  CAS  Google Scholar 

  82. P.D. Yang, MRS Bull. 30 (2) (2005) p. 85.

    Article  CAS  Google Scholar 

  83. D.J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A.V. Maslov, K. Knutsen, C.-Z. Ning, R.J. Saykally, and P. Yang, Proc. Natl. Acad. Sci. USA 102 (2005) p. 7800.

    Article  CAS  Google Scholar 

  84. J. Kong, N. Franklin, C. Zhou, S. Peng, J.J. Cho, and H. Dai, Science 287 (2000) p. 622.

    Article  CAS  Google Scholar 

  85. P.G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science 287 (2000) p. 1801.

    Article  CAS  Google Scholar 

  86. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N. Wong Shi Kam, M. Shim, Y. Li, W. Kim, P.J. Utz, and H. Dai, Proc. Natl. Acad. Sci. USA 100 (2003) p. 4984.

    Article  CAS  Google Scholar 

  87. Y. Cui, Q.Q. Wei, H.K. Park, and C.M. Lieber, Science 293 (2001) p. 1289.

    Article  CAS  Google Scholar 

  88. O. Clément, N. Siauve, C-A. Cuénod, and G. Frija, Top. Magn. Reson. Imaging 9 (1998) p. 167.

    Article  Google Scholar 

  89. Y.-X. Wang, S.M. Hussain, and G.P. Krestin, Eur. Radiol. 11 (2001) p. 2319.

    Article  CAS  Google Scholar 

  90. R. Lawaczeck, M. Menzel, and H. Pietsch, Appl. Organomet. Chem. 18 (2004) p. 506.

    Article  CAS  Google Scholar 

  91. A. Chilkoti and J.A. Hubbell, MRS Bull. 30 (3) (2005) p. 175.

    Article  Google Scholar 

  92. Y. Xia and G.M. Whitesides, Angew. Chem. Int. Ed. 37 (1998) p. 550.

    Article  CAS  Google Scholar 

  93. C.M. Nelson and C.S. Chen, FEBS Lett. 514 (2002) p. 238.

    Article  CAS  Google Scholar 

  94. C.S. Chen, J.L. Alonso, E. Ostuni, G.M. Whitesides, and D.E. Ingber, Biochem. Biophys. Res. Commun. 307 (2003) p. 355.

    Article  CAS  Google Scholar 

  95. S.N. Bhatia, U.J. Balis, M.L. Yarmush, and M. Toner, FASEB J. 13 (1999) p. 1883.

    Article  CAS  Google Scholar 

  96. M. Mrksich, MRS Bull. 30 (3) (2005) p. 180.

    Article  CAS  Google Scholar 

  97. S. Raghavan and C.S. Chen, Adv. Mater. 16 (15) (2004) p. 1303.

    Article  CAS  Google Scholar 

  98. C.S. Chen, X. Jiang, and G.M. Whitesides, MRS Bull. 30 (3) (2005) p. 194.

    Article  CAS  Google Scholar 

  99. X. Jiang and G.M. Whitesides, Eng. Life Sci. 3 (12) (2003) p. 475.

    Article  CAS  Google Scholar 

  100. G.M. Walker, J. Sai, A. Richmond, M. Stremler, C.Y. Chung, and J.P. Wikswo, Lab Chip 5 (2005) p. 611.

    Article  CAS  Google Scholar 

  101. S. Takayama, E. Ostuni, LeDuc, K. Naruse, D.E. Ingber, and G.M. Whitesides, Nature 411 (2001) p. 1016.

    Article  CAS  Google Scholar 

  102. J.T. Groves, N. Ulman, and S.G. Boxer, Science 275 (1997) p. 651.

    Article  CAS  Google Scholar 

  103. C. Yoshina-Ishii, G.P. Miller, M.L. Kraft, E.T. Kool, and S.G. Boxer, J. Am. Chem. Soc. 127 (2005) p. 1356.

    Article  CAS  Google Scholar 

  104. H. Schonherr, J.M. Johnson, P. Lenz, C.W. Frank, and S.G. Boxer, Langmuir 20 (2004) p. 11600.

    Article  CAS  Google Scholar 

  105. M.M. Baksh, M. Jaros, and J.T. Groves, Nature 427 (2004) p. 139.

    Article  CAS  Google Scholar 

  106. L. Kam and S.G. Boxer, Langmuir 19 (2003) p. 1624.

    Article  CAS  Google Scholar 

  107. A. Grakoui, S.K. Bromley, C. Sumen, M.M. Davis, A.S. Shaw, P.M. Allen, and M.L. Dustin, Science 285 (1999) p. 221.

    Article  CAS  Google Scholar 

  108. A. Curtis and C. Wilkinson, Biomaterials 18 (1998) p. 1573.

    Article  Google Scholar 

  109. R.G. Harrison, J. Exp. Zool. 17 (4) (1912) p. 521.

    Article  Google Scholar 

  110. D.M. Brunette, Exp. Cell Res. 164 (1) (1986) p. 11.

    Article  CAS  Google Scholar 

  111. A. Mata, C. Boehm, A.J. Fleischman, G.M. Muschler, and S. Roy, Biomed. Microdevices 4 (4) (2002) p. 267.

    Article  CAS  Google Scholar 

  112. A. Mata, C. Boehm, A.J. Fleischman, G.M. Muschler, and S. Roy, J. Biomed. Mater. Res. 62 (2002) p. 499.

    Article  CAS  Google Scholar 

  113. E.T. den Braber, H.V. Jansen, M.J. de Boer, H.J.E Croes, M. Elwenspoek, L.A. Ginsel, and J.A. Jansen, J. Biomed. Mater. Res. 40 (1998) p. 425.

    Article  Google Scholar 

  114. H.G. Craighead, S.W. Turner, R.C. Davis, C. James, A.M. Perez, P.M. St. John, M.S. Isaacson, L. Kam, W. Shain, J.N. Turner, and G. Banker, Biomed. Microdevices 1 (1998) p. 49.

    Article  CAS  Google Scholar 

  115. C.D.W Wilkinson, M. Riehle, M. Wood, J. Gallagher, and A.S.G Curtis, Mater. Sci. Eng. C19 (2002) p. 263.

    Article  CAS  Google Scholar 

  116. D. Deutsch, B. Motlagh, B. Russell, and T.A. Desai, J. Biomed. Mater. Res. 53 (2000) p. 267.

    Article  CAS  Google Scholar 

  117. J. Sambrook, E.F. Fritsch, and T. Maniatis, Molecular Cloning (Cold Spring Harbor Laboratory Press, New York, 1986).

    Google Scholar 

  118. J.C.M. van Hest and D.A. Tirrell, Chem. Commun. (2001) p. 1897.

    Google Scholar 

  119. W.A. Pelka, J.L. Harden, K.P. McGrath, D. Wirtz, and D.A. Tirrell, Science 281 (1998) p. 389.

    Article  Google Scholar 

  120. S.J.M Yu, V.P. Conticello, G.H. Zhang, C. Kayser, M.J. Fournier, T.L. Mason, and D.A. Tirrell, Nature 389 (1997) p. 167.

    Article  CAS  Google Scholar 

  121. A.J. Link, M.L. Mock, and D.A. Tirrell, Curr. Opin. Biotechnol. 14 (2003) p. 603.

    Article  CAS  Google Scholar 

  122. T. Hohsaka and M. Sisido, Curr. Opin. Chem. Biol. 6 (2002) p. 809.

    Article  CAS  Google Scholar 

  123. D.A. Dougherty, Curr. Opin. Chem. Biol. 4 (2000) p. 645.

    Article  CAS  Google Scholar 

  124. L. Wang, A. Brock, B. Herberich, and P.G. Schultz, Science 292 (2001) p.498.

    Article  CAS  Google Scholar 

  125. L. Wang and P.G. Schultz, Angew. Chem. Int. Ed. 44 (2005) p.34.

    Article  CAS  Google Scholar 

  126. S. Silver, Gene 179 (1996) p. 9.

    Article  CAS  Google Scholar 

  127. J.L. Gardea-Torresdey, J.G. Parsons, E. Gomez, J. Peralta-Videa, H.E. Troiani, P. Santiago, and M.J. Yacaman, Nano Lett. 2 (2002) p. 397.

    Article  CAS  Google Scholar 

  128. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry, and R. Kumar, Angew. Chem. Intl. Ed. 40 (2001) p. 3585.

    Article  CAS  Google Scholar 

  129. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parischa, P.V. Ajayakumar, M. Alam, R. Kumar, and M. Sastry, Nano Lett. 1 (2001) p. 515.

    Article  CAS  Google Scholar 

  130. C.T. Dameron, R.N. Reese, R.K. Mehra, A.R. Kortan, P.J. Carroll, M.L. Steigerwald, L.E. Brus, and D.R. Winge, Nature 338 (1989) p. 596.

    Article  CAS  Google Scholar 

  131. A. Ahmad, P. Mukherjee, D. Mandal, S. Senapati, M.I. Khan, R. Kumar, and M. Sastry, J. Am. Chem. Soc. 124 (2002) p.12108.

    Article  CAS  Google Scholar 

  132. T. Douglas, D.P.E Dickson, S. Betteridge, J. Charnock, C.D. Garner, and S. Mann, Science 269 (1995) p. 54.

    Article  CAS  Google Scholar 

  133. R.H. Hoess, Chem. Rev 101 (2001) p. 3205.

    Article  CAS  Google Scholar 

  134. E.D. Spoerke, N.D. Murray, H. Li, L.C. Brinson, D.C. Dunand, and S.I. Stupp, Acta Biomater. 1 (2005) p. 523.

    Article  Google Scholar 

  135. Atomic force microscope and scanning electron microscope images provided by Hongzhou Jiang and Dr. Daniel A. Harrington, respectively.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stupp, S.I., Donners, J.J.J.M., Li, Ls. et al. Expanding Frontiers in Biomaterials. MRS Bulletin 30, 864–873 (2005). https://doi.org/10.1557/mrs2005.276

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.276

Keywords

Navigation