Skip to main content
Log in

Shifting the phase boundary: Potassium sodium niobate derivates

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The focus on piezoelectric ceramics based on the potassium sodium niobate system began in 2004. After years of dedicated research, these materials can be considered one of the most promising lead-free piezoceramics with comprehensive performance. While their structure–property relationships are still not completely understood, the thermal stability issue is partly resolved, which leaves further room for phase-boundary engineering. Technological advancement has recently focused on using base metals as inner electrodes for multilayer actuators, which provides cost benefits as compared to lead zirconate titanate devices. The remaining challenges, however, such as poor sinterability and weak reproducibility of functional properties, still hinder extensive applications of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. B.T. Matthias, Phys. Rev. 75, 1771 (1949).

    Google Scholar 

  2. L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959).

    Google Scholar 

  3. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004).

    Google Scholar 

  4. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015).

    Google Scholar 

  5. J. Koruza, A.J. Bell, T. Frömling, K.G. Webber, K. Wang, J. Rödel, J. Materiomics 4, 13 (2018).

    Google Scholar 

  6. J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, F.-Z. Yao, J. Am. Ceram. Soc. 96, 3677 (2013).

    Google Scholar 

  7. B. Malicˇ, J. Koruza, J. Hrešcˇak, J. Bernard, K. Wang, J. Fisher, A. Bencˇan, Materials 8, 8117 (2015).

    Google Scholar 

  8. J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559 (2015).

    Google Scholar 

  9. S. Zhang, R. Xia, T.R. Shrout, J. Electroceram. 19, 251 (2007).

    Google Scholar 

  10. Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004).

    Google Scholar 

  11. E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 182905 (2005).

    Google Scholar 

  12. S. Zhang, R. Xia, T. Shrout, G. Zang, J. Wang, J. Appl. Phys. 100, 104108 (2006).

    Google Scholar 

  13. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, J. Am. Chem. Soc. 136, 2905 (2014).

    Google Scholar 

  14. P. Zhao, B Zhang, J.-F. Li, Appl. Phys. Lett. 90, 242909 (2007).

    Google Scholar 

  15. T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, J.-F. Li, Y. Gu, J. Zhu, S.J. Pennycook, Energy Environ. Sci. 10, 528 (2017).

    Google Scholar 

  16. J. Fu, R. Zuo, X. Fang, K. Liu, Mater. Res. Bull. 44, 1188 (2009).

    Google Scholar 

  17. R. Zuo, J. Fu, D. Lv, J. Am. Ceram. Soc. 92, 283 (2009).

    Google Scholar 

  18. B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang, X. Lou, ACS Appl. Mater. Interfaces 5, 7718 (2013).

    Google Scholar 

  19. T. Zheng, J. Wu, D. Xiao, J. Zhu, X. Wang, X. Lou, J. Mater. Chem. A 3, 1868 (2015).

    Google Scholar 

  20. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Adv. Mater. 28, 8519 (2016).

    Google Scholar 

  21. Y. Wang, J. Wu, D. Xiao, J. Zhu, Y. Jin, J. Zhu, P. Yu, L. Wu, X. Li, J. Appl. Phys. 102, 054101 (2007).

    Google Scholar 

  22. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Z. Pei, Appl. Phys. Lett. 91, 202907 (2007).

    Google Scholar 

  23. J. Wu, Y. Wang, D. Xiao, J. Zhu, P. Yu, L. Wu, W. Wu, Jpn. J. Appl. Phys. 46, 7375 (2007).

    Google Scholar 

  24. P. Zhao, B. Zhang, J.-F. Li, Appl. Phys. Lett. 91, 172901 (2007).

    Google Scholar 

  25. B. Ming, J. Wang, P. Qi, G. Zang, J. Appl. Phys. 101, 054103 (2007).

    Google Scholar 

  26. Y. Qin, J. Zhang, W. Yao, C. Lu, S. Zhang, ACS Appl. Mater. Interfaces 8, 7257 (2016).

    Google Scholar 

  27. Y. Wang, J. Wu, D. Xiao, J. Zhu, P. Yu, L. Wu, X. Li, J. Alloys Compd. 462, 310 (2008).

    Google Scholar 

  28. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li, Z. Pei, J. Phys. D Appl. Phys. 41, 115413 (2008).

    Google Scholar 

  29. K. Wang, J.-F. Li, N. Liu, Appl. Phys. Lett. 93, 092904 (2008).

    Google Scholar 

  30. X. Sun, J. Deng, C. Sun, J. Li, J. Chen, R. Yu, G. Liu, X. Xing, L. Qiao, J. Am. Ceram. Soc. 92, 1853 (2009).

    Google Scholar 

  31. M. Jiang, X. Liu, G. Chen, Scripta Mater. 60, 909 (2009).

    Google Scholar 

  32. Y. Gao, J. Zhang, Y. Qing, Y. Tan, Z. Zhang, X. Hao, J. Am. Ceram. Soc. 94, 2968 (2011).

    Google Scholar 

  33. P. Palei, P. Kumar, J. Phys. Chem. Solids 73, 827 (2012).

    Google Scholar 

  34. H. Tao, J. Wu, D. Xiao, J. Zhu, X. Wang, X. Lou, ACS Appl. Mater. Interfaces 6, 20358 (2014).

    Google Scholar 

  35. H. Tao, J. Wu, H. Wang, J. Alloys Compd. 684, 217 (2016).

    Google Scholar 

  36. X. Cheng, J. Wu, X. Wang, B. Zhang, J. Zhu, D. Xiao, X. Wang, X. Lou, Appl. Phys. Lett. 103, 052906 (2013).

    Google Scholar 

  37. X. Wang, J. Wu, D. Xiao, X. Cheng, T. Zheng, X. Lou, B. Zhang, J. Zhu, ACS Appl. Mater. Interfaces 6, 6177 (2014).

    Google Scholar 

  38. J. Wu, Y. Wang, H. Wang, RSC Adv. 4, 64835 (2014).

    Google Scholar 

  39. T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Lou, Dalton Trans. 43, 9419 (2014).

  40. J. Wu, J. Xiao, T. Zheng, X. Wang, X. Cheng, B. Zhang, D. Xiao, J. Zhu, Scripta Mater. 88, 41 (2014).

    Google Scholar 

  41. T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, J. Mater. Chem. C 2, 8796 (2014).

    Google Scholar 

  42. X. Wang, J. Wu, D. Xiao, X. Cheng, T. Zheng, B. Zhang, X. Lou, J. Zhu, J. Mater. Chem. A 2, 4122 (2014).

    Google Scholar 

  43. F. Rubio-Marcos, R. López-Juárez, R. Rojas-Hernandez, A. Campo, N. Razo-Pérez, J. Fernandez, ACS Appl. Mater. Interfaces 7, 23080 (2015).

    Google Scholar 

  44. Y. Yuan, J. Wu, H. Tao, X. Lv, X. Wang, X. Lou, J. Appl. Phys. 117, 084103 (2015).

    Google Scholar 

  45. T. Zheng, Y. Zu, J. Wu, J. Alloys Compd. 647, 927 (2015).

    Google Scholar 

  46. T. Zheng, J. Wu, D. Xiao, J. Zhu, X. Wang, L. Xin, X. Lou, ACS Appl. Mater. Interfaces 7, 5927 (2015).

    Google Scholar 

  47. T. Zheng, J. Wu, D. Xiao, J. Zhu, ACS Appl. Mater. Interfaces 7, 20332 (2015).

    Google Scholar 

  48. L. Jiang, J. Xing, Z. Tan, J. Wu, Q. Chen, D. Xiao, J. Zhu, J. Mater. Sci. 51, 4963 (2016).

    Google Scholar 

  49. H. Tao, Ji. Wu, T. Zheng, X. Wang, X. Lou, J. Appl. Phys. 118, 044102 (2015).

    Google Scholar 

  50. H. Tao, J. Wu, J. Eur. Ceram. Soc. 36, 1605 (2016).

    Google Scholar 

  51. B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, S. Pennycook, J. Am. Chem. Soc. 138, 15459 (2016).

    Google Scholar 

  52. R. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Phys. Status Solidi Rapid Res. Lett. 3, 142 (2009).

    Google Scholar 

  53. J. Zushi, T. Ariizumi, S. Kojima, R. Wang, H. Bando, Jpn. J. Appl. Phys. 52, 07HB02 (2013).

  54. T. Karaki, T. Katayama, K. Yoshida, S. Maruyama, M. Adachi, Jpn. J. Appl. Phys. 52, 09KD11 (2013).

  55. R. Wang, K. Wang, F.-Z. Yao, J.-F. Li, F.H. Schader, K.G. Webber, W. Jo, J. Rödel, J. Am. Ceram. Soc. 98, 2177 (2015).

    Google Scholar 

  56. M.-H. Zhang, K. Wang, Y.J. Du, G. Dai, W. Sun, G. Li, D. Hu, H.C. Thong, C. Zhao, X.Q. Xi, Z.X. Yue, J.-F. Li, J. Am. Chem. Soc. 139, 3889 (2017).

    Google Scholar 

  57. F.-Z. Yao, K. Wang, L.-Q. Cheng, X. Zhang, W. Zhang, F. Zhu, J.-F. Li, J. Am. Ceram. Soc. 98, 448 (2015).

    Google Scholar 

  58. J. Hirohashi, K. Yamada, H. Kamio, M. Uchida, S. Shichijyo, J. Appl. Phys. 98, 034107 (2005).

    Google Scholar 

  59. J.-F. Li, K. Wang, B.P. Zhang, L.M. Zhang, J. Am. Ceram. Soc. 89, 706 (2006).

    Google Scholar 

  60. Z. Shen, D. Grüner, M. Eriksson, L.M. Belova, C.-W. Nan, H. Yan, J. Materiomics 3, 267 (2017).

    Google Scholar 

  61. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30, 170517 (2018).

    Google Scholar 

  62. S. Kawada, M. Kimura, Y. Higuchi, H. Takagi, Appl. Phys. Express 2, 111401 (2009).

    Google Scholar 

  63. K. Ohbayashi, T. Matsuoka, K. Kitamura, H. Yamada, T. Hishida, M. Yamazaki, Jpn. J. Appl. Phys. 56, 061501 (2017).

    Google Scholar 

  64. J. Wu, D. Xiao, J. Zhu, J. Mater. Sci. Mater. Electron. 26, 9297 (2015).

    Google Scholar 

  65. K. Wang, J.-F. Li, Appl. Phys. Lett. 91, 262902 (2007).

    Google Scholar 

  66. Y. Dai, X. Zhang, G. Zhou, Appl. Phys. Lett. 90, 262903 (2007).

    Google Scholar 

  67. K. Wang, F.-Z. Yao, W. Jo, D. Gobeljic, V.V. Shvartsman, D.C. Lupascu, J.-F. Li, J. Rödel, Adv. Funct. Mater. 23, 4079 (2013).

    Google Scholar 

  68. F.-Z. Yao, K. Wang, W. Jo, K.G. Webber, T.P. Comyn, J.-X. Ding, B. Xu, L.-Q. Cheng, M.-P. Zheng, Y.-D. Hou, J.-F. Li, Adv. Funct. Mater. 26, 1217 (2016).

    Google Scholar 

  69. M.-H. Zhang, K. Wang, J.S. Zhou, J.J. Zhou, X. Chu, X. Lv, J. Wu, J.-F. Li, Acta Mater. 122, 344 (2017).

    Google Scholar 

  70. N.M. Hagh, B. Jadidian, E. Ashbahian, A. Safari, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 214 (2008).

    Google Scholar 

  71. X. Vendrell, J.E. Garcia, X. Bril, D.A. Ochoa, L. Mestres, G. Dezanneau, J. Eur. Ceram. Soc. 35, 125 (2015).

    Google Scholar 

  72. E. Li, H. Kakemoto, T. Hoshina, T. Tsurumi, Jpn. J. Appl. Phys. 47, 7702 (2008).

    Google Scholar 

  73. T. Matsuoka, H. Kozuka, K. Kitamura, H. Yamada, T. Kurahashi, M. Yamazaki, K. Ohbayashi, J. Appl. Phys. 116, 15 (2014).

    Google Scholar 

  74. L. Gao, H. Guo, S. Zhang, C. Randall, Actuators 5, 8 (2016).

    Google Scholar 

  75. K. Kobayashi, Y. Doshida, Y. Mizuno, C.A. Randall, Jpn. J. Appl. Phys. 52, 09KD07 (2013).

  76. H. Hayashi, S. Kawada, M. Kimura, Y. Nakai, T. Tabata, K. Shiratsuyu, K. Nada, H. Takagi, Jpn. J. Appl. Phys. 51, 09LD01 (2012).

  77. L. Gao, S.W. Ko, H. Guo, E. Hennig, C.A. Randall, J. Am. Ceram. Soc. 99, 2017 (2016).

    Google Scholar 

  78. J. Acker, H. Kungl, M.J. Hoffmann, J. Am. Ceram. Soc. 93, 1270 (2010).

    Google Scholar 

  79. J.-F. Li, Y.H. Zhen, B-P. Zhang, L.M. Zhang, K. Wang, Ceram. Int. 34, 783 (2008).

    Google Scholar 

  80. P. Bomlai, P. Wichianrat, S. Muensit, S. Milne, J. Am. Ceram. Soc. 90, 1650 (2007).

    Google Scholar 

  81. M. Matsubara, T. Yamaguchi, K. Kikuta, S.I. Hirano, Jpn. J. Appl. Phys. 43, 7159 (2004).

    Google Scholar 

  82. M. Matsubara, T. Yamaguchi, K. Kikuta, S.I. Hirano, Jpn. J. Appl. Phys. 44, 258 (2005).

    Google Scholar 

  83. B.C. Park, I.K. Jang, V.D.N. Tran, W.P. Tai, J.S. Lee, Mater. Lett. 64, 1577 (2010).

    Google Scholar 

  84. J. Bernard, A. Ben cˇ an, T. Rojac, J. Holc, B. Mali cˇ, M. Kosec, J. Am. Ceram. Soc. 91, 2409 (2008).

    Google Scholar 

  85. J.G. Fisher, S.J.L. Kang, J. Eur. Ceram. Soc. 29, 2581 (2009).

    Google Scholar 

  86. A. Popovi cˇ, L. Bencze, J. Koruza, B. Mali cˇ, RSC Adv. 5, 76249 (2015).

    Google Scholar 

  87. N.M. Hagh, B. Jadidian, A. Safari, J. Electroceram. 18, 339 (2007).

    Google Scholar 

  88. J. Hreš cˇ ak, A. Ben c˜ an, T. Rojac, B. Mali c˜, J. Eur. Ceram. Soc. 33, 3065 (2013).

    Google Scholar 

  89. B. Mali cˇ, D. Jenko, J. Holc, M. Hrovat, M. Kosec, J. Am. Ceram. Soc. 91, 1916 (2008).

    Google Scholar 

  90. Y. Wang, D. Damjanovic, N. Klein, E. Hollenstein, N. Setter, J. Am. Ceram. Soc. 90, 3485 (2007).

    Google Scholar 

  91. T. Rojac, A. Ben cˇ an, H. Urši cˇ, B. Mali cˇ, M. Kosec, J. Am. Ceram. Soc. 91, 3789 (2008).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Grant Nos. 51572143, 51332002, and 51722208) and the Slovenian Research Agency (P2-0105 and L2-8180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Malič, B. & Wu, J. Shifting the phase boundary: Potassium sodium niobate derivates. MRS Bulletin 43, 607–611 (2018). https://doi.org/10.1557/mrs.2018.178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.178

Navigation