Skip to main content

Advertisement

Log in

Intrinsically conducting metal–organic frameworks

  • Metal–Organic Frameworks for Electronics and Photonics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The development of metal–organic frameworks (MOFs) as microporous electronic conductors is an exciting research frontier that has the potential to revolutionize a wide range of technologically and industrially relevant fields, from catalysis to solid-state sensing and energy-storage devices, among others. After nearly two decades of intense research on MOFs, examples of intrinsically conducting MOFs remain relatively scarce; however, enormous strides have recently been made. This article briefly reviews the current status of the field, with a focus on experimental milestones that have shed light on crucial structure–property relationships that underpin future progress. Central to our discussion are a series of design considerations, including redox-matching, donor–acceptor interactions, mixed valency, and π-interactions. Transformational opportunities exist at both fundamental and applied levels, from improved measurement techniques and theoretical understanding of conduction mechanisms to device engineering. Taken together, these developments will herald a new era in advanced functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. B.F. Hoskins, R. Robson, J. Am. Chem. Soc. 112, 1546 (1990).

    Google Scholar 

  2. O.M. Yaghi, G. Li, H. Li, Nature 378, 703 (1995).

    Google Scholar 

  3. S.R. Batten, S.M. Neville, D.R. Turner, Coordination Polymers: Design, Analysis and Application (Royal Society of Chemistry, Cambridge, UK, 2008).

    Google Scholar 

  4. D. Farrusseng, Metal–Organic Frameworks: Applications from Catalysis to Gas Storage (Wiley, Weinheim, 2011).

    Google Scholar 

  5. D.M. D’Alessandro, J.R.R. Kanga, J.S. Caddy, Aust. J. Chem. 64, 718 (2011).

    Google Scholar 

  6. G. Givaja, P. Amo-Ochoa, C.J. Gomez-Garcia, F. Zamora, Chem. Soc. Rev. 41, 115 (2012).

    Google Scholar 

  7. L. Sun, M.G. Campbell, M. Dincă Angew. Chem. Int. Ed. 55, 3566 (2016).

    Google Scholar 

  8. M.D. Allendorf, V. Stavila, CrystEngComm 17, 229 (2015).

    Google Scholar 

  9. M.D. Allendorf, M.E. Foster, F. Léonard, V. Stavila, P.L. Feng, F.P. Doty, K. Leong, E.Y. Ma, S.R. Johnston, A.A. Talin, J. Phys. Chem. Lett. 6, 1182 (2015).

    Google Scholar 

  10. D.M. D’Alessandro, Chem. Commun. 52, 8957 (2016).

    Google Scholar 

  11. S.J. England, P. Kathirgamanathan, D.R. Rosseinsky, J. Chem. Soc. Chem. Commun. 17, 840 (1980).

    Google Scholar 

  12. D.R. Rosseinsky, J.S. Tonge, J. Berthelot, J.F. Cassidy, J. Chem. Soc. Faraday Trans. 83, 231 (1987).

    Google Scholar 

  13. S.R. Ahrenholtz, C.C. Epley, A.J. Morris, J. Am. Chem. Soc. 136, 2464 (2014).

    Google Scholar 

  14. N.F. Mott, Philos. Mag. 19, 835 (1969).

    Google Scholar 

  15. P. Amo-Ochoa, L. Welte, R. Gonzalez-Prieto, P.J. Sanz Miguel, C.J. Gomez-Garcia, E. Mateo-Marti, S. Delgado, J. Gomez-Herrero, F. Zamora, Chem. Commun. 46, 3262 (2010).

    Google Scholar 

  16. T.B. Faust, D.M. D’Alessandro, RSC Adv. 4, 17498 (2014).

    Google Scholar 

  17. H. Miyasaka, Acc. Chem. Res. 46, 248 (2012).

    Google Scholar 

  18. J. Ferraris, D.O. Cowan, V. Walatka, J.H. Perlstein, J. Am. Chem. Soc. 95, 948 (1973).

    Google Scholar 

  19. H. Alves, A.S. Molinari, H. Xie, A.F. Morpurgo, Nat. Mater. 7, 574 (2008).

    Google Scholar 

  20. M.J. Cohen, L.B. Coleman, A.F. Garito, A.J. Heeger, Phys. Rev. B Condens. Matter 10, 1298 (1974).

    Google Scholar 

  21. J.B. Torrance, J.E. Vazquez, J.J. Mayerle, V.Y. Lee, Phys. Rev. Lett. 46, 253 (1981).

    Google Scholar 

  22. G. Saito, Y. Yoshida, Bull. Chem. Soc. Jpn. 80, 1 (2007).

    Google Scholar 

  23. K.P. Goetz, D. Vermeulen, M.E. Payne, C. Kloc, L.E. McNeil, O.D. Jurchescu, J. Mater. Chem. C 2, 3065 (2014).

    Google Scholar 

  24. H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, Inorg. Chem. 16, 2704 (1977).

    Google Scholar 

  25. M.B. Robin, Inorg. Chem. 1, 337 (1962).

    Google Scholar 

  26. J.N. Behera, D.M. D’Alessandro, N. Soheilnia, J.R. Long, Chem. Mater. 21, 1922 (2009).

    Google Scholar 

  27. L.E. Darago, M.L. Aubrey, C.J. Yu, M.I. Gonzalez, J.R. Long, J. Am. Chem. Soc. 137, 15703 (2015).

    Google Scholar 

  28. A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila, P. Haney, R.A. Kinney, V. Szalai, F. El Gabaly, H.P. Yoon, F. Leonard, M.D. Allendorf, Science 343, 66 (2014).

    Google Scholar 

  29. S. Takaishi, M. Hosoda, T. Kajiwara, H. Miyasaka, M. Yamashita, Y. Nakanishi, Y. Kitagawa, K. Yamaguchi, A. Kobayashi, H. Kitagawa, Inorg. Chem. 48, 9048 (2009).

    Google Scholar 

  30. Y. Kobayashi, B. Jacobs, M.D. Allendorf, J.R. Long, Chem. Mater. 22, 4120 (2010).

    Google Scholar 

  31. H. Miyasaka, C.S. Campos-Fernández, R. Clérac, K.R. Dunbar, Angew. Chem. Int. Ed. 39, 3831 (2000).

    Google Scholar 

  32. H. Miyasaka, N. Motokawa, S. Matsunaga, M. Yamashita, K. Sugimoto, T. Mori, N. Toyota, K.R. Dunbar, J. Am. Chem. Soc. 132, 1532 (2010).

    Google Scholar 

  33. H. Miyasaka, T. Izawa, N. Takahashi, M. Yamashita, K.R. Dunbar, J. Am. Chem. Soc. 128, 11358 (2006).

    Google Scholar 

  34. L. Sun, T. Miyakai, S. Seki, M. Dincă J. Am. Chem. Soc. 135, 8185 (2013).

    Google Scholar 

  35. L. Sun, C.H. Hendon, M.A. Minier, A. Walsh, M. Dincă J. Am. Chem. Soc. 137, 6164 (2015).

    Google Scholar 

  36. F. Gandara, F.J. Uribe-Romo, D.K. Britt, H. Furukawa, L. Lei, R. Cheng, X. Duan, M. O’Keeffe, O.M. Yaghi, Chem. Eur. J. 18, 10595 (2012).

    Google Scholar 

  37. T. Panda, R. Banerjee, Proc. Natl. Acad. Sci. India 84, 331 (2014).

    Google Scholar 

  38. T.C. Narayan, T. Miyakai, S. Seki, M. Dincă J. Am. Chem. Soc. 134, 12932 (2012).

    Google Scholar 

  39. S.S. Park, E.R. Hontz, L. Sun, C.H. Hendon, A. Walsh, T. Van Voorhis, M. Dincă, J. Am. Chem. Soc. 137, 1774 (2015).

    Google Scholar 

  40. M. Hmadeh, Z. Lu, Z. Liu, F. Gandara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. Duan, B. Dunn, Y. Yamamto, O. Terasaki, O.M. Yaghi, Chem. Mater. 24, 3511 (2012).

    Google Scholar 

  41. T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, H. Nishihara, J. Am. Chem. Soc. 135, 2462 (2013).

    Google Scholar 

  42. D. Sheberla, L. Sun, M.A. Blood-Forsythe, S. Er, C.R. Wade, C.K. Brozek, A. Aspuru-Guzik, M. Dincă, J. Am. Chem. Soc. 136, 8859 (2014).

    Google Scholar 

  43. T. Kambe, R. Sakamoto, T. Kusamoto, T. Pal, N. Fukui, K. Hoshiko, T. Shimojima, Z. Wang, T. Hirahara, K. Ishizaka, S. Hasegawa, F. Liu, H. Nishihara, J. Am. Chem. Soc. 136, 14357 (2014).

    Google Scholar 

  44. X. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang, H. Geng, Y. Zou, C.-A. Di, Y. Yi, Y. Sun, W. Xu, D. Zhu, Nat. Commun. 6, 1 (2015).

    Google Scholar 

  45. T. Pal, T. Kambe, T. Kusamoto, M.L. Foo, R. Matsuoka, R. Sakamoto, H. Nishihara, ChemPlusChem 80, 1255 (2015).

    Google Scholar 

  46. J. Cui, Z. Xu, Chem. Commun. 50, 3986 (2014).

    Google Scholar 

  47. M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dincă, Angew. Chem. Int. Ed. 54, 4349 (2015).

    Google Scholar 

  48. A.J. Clough, J.W. Yoo, M.H. Mecklenburg, S.C. Marinescu, J. Am. Chem. Soc. 137, 118 (2015).

    Google Scholar 

  49. R. Dong, M. Pfeffermann, H. Liang, Z. Zheng, X. Zhu, J. Zhang, X. Feng, Angew. Chem. Int. Ed. 54, 12058 (2015).

    Google Scholar 

  50. M.G. Campbell, S.F. Liu, T.M. Swager, M. Dincă J. Am. Chem. Soc. 137, 13780 (2015).

    Google Scholar 

  51. M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dincă, Angew. Chem. 127, 4423 (2015).

    Google Scholar 

  52. F. Shojaei, J.R. Hahn, H.S. Kang, Chem. Mater. 26, 2967 (2014).

    Google Scholar 

  53. A.K. Cheetham, T.D. Bennett, F.-X. Coudert, A.L. Goodwin, Dalton Trans. 45, 4113 (2016).

    Google Scholar 

  54. P.M. Usov, C. Fabian, D.M. D’Alessandro, Chem. Commun. 48, 3945 (2012).

    Google Scholar 

  55. C.F. Leong, B. Chan, T.B. Faust, D.M. D’Alessandro, Chem. Sci. 5, 4724 (2014).

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support of the Australian Research Council.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, C.F., Usov, P.M. & D’Alessandro, D.M. Intrinsically conducting metal–organic frameworks. MRS Bulletin 41, 858–864 (2016). https://doi.org/10.1557/mrs.2016.241

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.241

Navigation