Skip to main content
Log in

Transmission electron microscopy of specimens and processes in liquids

  • Technical Features
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Transmission electron microscopy is a powerful technique for the analysis of solid samples, but it can also be used to image in liquid environments, gaining a unique view of processes and structures in liquids. Here, we describe recent developments in electron microscopy of liquids and discuss applications in several areas. We first describe closed-liquid-cell microscopy with its opportunities for visualizing electrochemical processes. We then discuss imaging of low-vapor-pressure liquids relevant to the operation of rechargeable batteries. Finally, we describe imaging of thick biological materials to obtain information on membrane proteins in intact mammalian cells that cannot be observed classically under dry or frozen conditions. Electron microscopy in liquid environments is developing rapidly and has the potential to solve key problems in materials science, physics, chemistry, and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. N. de Jonge, F.M. Ross, Nat. Nanotechnol. 6, 695 (2011).

    Google Scholar 

  2. F.M. Ross, Science 350, aaa9886 (2015).

    Google Scholar 

  3. E. Ruska, Kolloid Z. 100, 212 (1942).

    Google Scholar 

  4. I.M. Abrams, J.W. McBain, J. Appl. Phys. 15, 607 (1944).

    Google Scholar 

  5. G.D. Danilatos, V.N.E. Robinson, Scanning 18, 75 (1979).

    Google Scholar 

  6. H.G. Heide, Naturwissenschaften 47, 313 (1960).

    Google Scholar 

  7. M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, F.M. Ross, Nat. Mater. 2, 532 (2003).

    Google Scholar 

  8. R. Franks, S. Morefield, J. Wen, D. Liao, J. Alvarado, M. Strano, C. Marsh, J. Nanosci. Nanotechnol. 8, 4404 (2008).

    Google Scholar 

  9. H. Zheng, R.K. Smith, Y.W. Jun, C. Kisielowski, U. Dahmen, A.P. Alivisatos, Science 324, 1309 (2009).

    Google Scholar 

  10. N. de Jonge, D.B. Peckys, G.J. Kremers, D.W. Piston, Proc. Natl. Acad. Sci. U.S.A. 106, 2159 (2009).

    Google Scholar 

  11. E.A. Ring, N. de Jonge, Microsc. Microanal. 16, 622 (2010).

    Google Scholar 

  12. R.R. Unocic, R.L. Sacci, G.M. Brown, G.M. Veith, N.J. Dudney, K.L. More, F.S. Walden II, D.S. Gardiner, J. Damiano, D.P. Nackashi, Microsc. Microanal. 20, 452 (2014).

    Google Scholar 

  13. J.M. Yuk, J. Park, P. Ercius, K. Kim, D.J. Hellebusch, M.F. Crommie, J.Y. Lee, A. Zettl, A.P. Alivisatos, Science 336, 61 (2012).

    Google Scholar 

  14. M. Wojcik, M. Hauser, W. Li, S. Moon, K. Xu, Nat. Commun. 6, 7384 (2015).

    Google Scholar 

  15. J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, Science 330, 1515 (2010).

    Google Scholar 

  16. A. Bogner, G. Thollet, D. Basset, P.H. Jouneau, C. Gauthier, Ultramicroscopy 104, 290 (2005).

    Google Scholar 

  17. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Google Scholar 

  18. F.M. Ross, P.C. Searson, Proc. 53rd Annu. Microsc. Soc. Amer. Meet. G.W. Bailey, R.A. Hennigar, N.J. Zaluzec, Eds. (Jones and Begell Publishing, New York, 1995), pp. 232.

    Google Scholar 

  19. F.M. Ross, IBM J. Res. Dev. 44, 489 (2000).

    Google Scholar 

  20. J.M. Grogan, N.M. Schneider, F.M. Ross, H.H. Bau, J. Indian Inst. Sci. 92, 295 (2012).

    Google Scholar 

  21. C. Mueller, M. Harb, J.R. Dwyer, R.J.D. Miller, J. Phys. Chem. Lett. 4, 2339 (2013).

    Google Scholar 

  22. J.F. Creemer, S. Helveg, G.H. Hoveling, S. Ullmann, A.M. Molenbroek, P.M. Sarro, H.W. Zandbergen, J. Microelectromech. Syst. 19, 254 (2010).

    Google Scholar 

  23. J.W. Gallaway, D. Desai, A. Gaikwad, C. Corredor, S. Banerjee, D. Steingart, J. Electrochem. Soc. 157, A1279 (2010).

    Google Scholar 

  24. O.M. Magnussen, L. Zitzler, B. Gleich, M.R. Vogt, R.J. Behm, Electrochim. Acta 46, 3725 (2001).

    Google Scholar 

  25. P. Abellan, T.J. Woehl, L.R. Parent, N.D. Browning, J.E. Evans, I. Arslan, Chem. Commun. 50, 4873 (2014).

    Google Scholar 

  26. D.B. Peckys, G.M. Veith, D.C. Joy, N. de Jonge, PLoS One 4, e8214 (2009).

    Google Scholar 

  27. N.M. Schneider, M.M. Norton, B.J. Mendel, J.M. Grogan, F.M. Ross, H.H. Bau, J. Phys. Chem. C 118, 22373 (2014).

    Google Scholar 

  28. J.M. Grogan, N.M. Schneider, F.M. Ross, H.H. Bau, Nano Lett. 14, 359 (2014).

    Google Scholar 

  29. A. Radisic, P.M. Vereecken, J.B. Hannon, P.C. Searson, F.M. Ross, Nano Lett. 6, 238 (2006).

    Google Scholar 

  30. A. Radisic, P.M. Vereecken, P.C. Searson, F.M. Ross, Surf. Sci. 600, 1817 (2006).

    Google Scholar 

  31. J.H. Park, D.A. Steingart, N.M. Schneider, S. Kodambaka, F.M. Ross, Nano Lett. (forthcoming).

  32. J.M. Tarascon, M. Armand, Nature 414, 359 (2001).

    Google Scholar 

  33. S.W. Chee, F.M. Ross, D. Duquette, R. Hull, “Studies of Corrosion of Al Thin Films Using Liquid Cell Transmission Electron Microscopy,” Mater. Res. Soc. Symp. Proc. 1525 (Materials Research Society, Warrendale, PA, 2013), p. 558.

    Google Scholar 

  34. N.J. Zaluzec, M.G. Burke, S.J. Haigh, M.A. Kulzick, Microsc. Microanal. 20, 323 (2014).

    Google Scholar 

  35. E. Sutter, K. Jungjohann, S. Bliznakov, A. Courty, E. Maisonhaute, S. Tenney, P. Sutter, Nat. Commun. 5, 4946 (2014).

    Google Scholar 

  36. C.M. Wang, W. Xu, J. Liu, D.W. Choi, B. Arey, L.V. Saraf, J.G. Zhang, Z.G. Yang, S. Thevuthasan, D.R. Baer, N. Salmon, J. Mater. Res. 25, 1541 (2010).

    Google Scholar 

  37. C.M. Wang, J. Mater. Res. 30, 326 (2015).

    Google Scholar 

  38. X.H. Liu, J.Y. Huang, Energy Environ. Sci. 4, 3844 (2011).

    Google Scholar 

  39. F. Wang, H.-C. Yu, M.-H. Chen, L. Wu, N. Pereira, K. Thornton, A. Van der Ven, Y. Zhu, G.G. Amatucci, J. Graetz, Nat. Commun. 3, 1201 (2012).

    Google Scholar 

  40. Y. He, M. Gu, H. Xiao, L. Luo, Y. Shao, F. Gao, Y. Du, S.X. Mao, C.M. Wang, Angew. Chem. Int. Ed. 55, 6244 (2016).

    Google Scholar 

  41. M. Gu, Z.G. Wang, J.G. Connell, D.E. Perea, L.J. Lauhon, F. Gao, C.M. Wang, ACS Nano 7, 6303 (2013).

    Google Scholar 

  42. T.D. Hatchard, J.R. Dahn, J. Electrochem. Soc. 151, A838 (2004).

    Google Scholar 

  43. T. Kinoshita, Y. Mori, K. Hirano, S. Sugimoto, K. Okuda, S. Matsumoto, T. Namiki, T. Ebihara, M. Kawata, H. Nishiyama, M. Sato, M. Suga, K. Higashiyama, K. Sonomoto, Y. Mizunoe, S. Nishihara, C. Sato, Microsc. Microanal. 20, 469 (2014).

    Google Scholar 

  44. N. Liv, D.S. van Oosten Slingeland, J.P. Baudoin, P. Kruit, D.W. Piston, J.P. Hoogenboom, ACS Nano 10, 265 (2016).

    Google Scholar 

  45. D.B. Peckys, N. de Jonge, Microsc. Microanal. 20, 346 (2014).

    Google Scholar 

  46. D.B. Peckys, U. Korf, N. de Jonge, Sci. Adv. 1, e1500165 (2015).

    Google Scholar 

  47. H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, C. Sato, J. Struct. Biol. 169, 438 (2010).

    Google Scholar 

  48. Epidermal Growth Factor, Protein Data Bank, National Science Foundation, http://dx.doi.org/10.2210/rcsb_pdb/mom_2010_6.

  49. N. de Jonge, N. Poirier-Demers, H. Demers, D.B. Peckys, D. Drouin, Ultramicroscopy 110, 1114 (2010).

    Google Scholar 

  50. D.B. Peckys, J.P. Baudoin, M. Eder, U. Werner, N. de Jonge, Sci. Rep. 3, 2626 (2013).

    Google Scholar 

  51. J. Hermannsdörfer, V. Tinnemann, D.B. Peckys, N. de Jonge, Microsc. Microanal. 20, 656 (2016).

    Google Scholar 

  52. M.J. Dukes, D.B. Peckys, N. de Jonge, ACS Nano 4, 4110 (2010).

    Google Scholar 

  53. P.J. Brennan, T. Kumagai, A. Berezov, R. Murali, M.I. Greene, Oncogene 21, 328 (2002).

    Google Scholar 

  54. T. Vu, F.X. Claret, Front. Oncol. 2, 62 (2012).

    Google Scholar 

  55. E.R. White, S.B. Singer, V. Augustyn, W.A. Hubbard, M. Mecklenburg, B. Dunn, B.C. Regan, ACS Nano 6, 6308 (2012).

    Google Scholar 

  56. D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, C. Ricolleau, Nano Lett. 15, 2574 (2015).

    Google Scholar 

  57. P.J. Smeets, K.R. Cho, R.G. Kempen, N.A. Sommerdijk, J.J. De Yoreo, Nat. Mater. 14, 394 (2015).

    Google Scholar 

  58. T.J. Woehl, S. Kashyap, E. Firlar, T. Perez-Gonzalez, D. Faivre, D. Trubitsyn, D.A. Bazylinski, T. Prozorov, Sci. Rep. 4, 6854 (2014).

    Google Scholar 

  59. M.J. Dukes, R. Thomas, J. Damiano, K.L. Klein, S. Balasubramaniam, S. Kayandan, J.S. Riffle, R.M. Davis, S.M. McDonald, D.F. Kelly, Microsc. Microanal. 20, 338 (2014).

    Google Scholar 

Download references

Acknowledgements

F.M.R. acknowledges R.M. Tromp, A.W. Ellis, and M.C. Reuter for their collaborations during the development of the closed liquid cell. N.J. is grateful to D.B. Peckys for biological research and discussions, E. Arzt for his support through INM, and the Leibniz Association. C.M.W. acknowledges the support of the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy (DOE), Contract No. DE-AC02–05CH11231, Subcontract No. 6951379, under the Battery Materials Research Program. Part of the research described here was performed at EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances M. Ross.

Additional information

The following article is based on the Innovation in Materials Characterization Award presentation given at the 2016 MRS Spring Meeting in Phoenix, Ariz. The authors received this award for their “seminal contributions to the imaging of specimens in liquids using transmission electron microscopy, revolutionizing the direct observation of materials processes, batteries during operation, and biological structures.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ross, F.M., Wang, C. & de Jonge, N. Transmission electron microscopy of specimens and processes in liquids. MRS Bulletin 41, 791–803 (2016). https://doi.org/10.1557/mrs.2016.212

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.212

Navigation