Skip to main content
Log in

Three-dimensional integration: An industry perspective

  • Materials challenges in 3D IC technology
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The field of electronics packaging is undergoing a significant transition to accommodate the slowing down of lithographically driven semiconductor scaling. Three-dimensional (3D) integration is an important component of this transition and promises to revolutionize the way chips are assembled and interconnected in a subsystem. In this article, we develop the key attributes of 3D integration, the enablers and the challenges that need to be overcome before widespread acceptance by industry. While we are already seeing the proliferation of applications in the memory subsystem, the best is yet to come with the heterogeneous integration of a diverse set of technologies, the mixing of lithographic nodes and an economic argument for its implementation based on overall system function, and cost rather than a narrow component-based analysis. Finally, an extension to monolithic 3D integration promises even further benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. * A recent retrospective of Dennard’s scaling theory by M. Bohr is available at http://www.eng.auburn.edu/∼agrawvd/COURSE/READING/LOWP/Boh07.pdf and also in the January 2007 issue of the IEEE Journal of Solid-State Circuits Society.

  2. Latency refers to the time it takes for data to reach its destination after being requested, a measure of delay that includes logic operations and transit time, while bandwidth refers to how much data may be transferred in a unit of time—a measure of how many interconnects exist between two system nodes.

  3. Hierarchical wiring refers to a progressive increase in both wiring pitch and thickness while moving away from the silicon surface. The levels near the silicon are fine pitch and used for local interconnects. While moving up the hierarchy, one can wire longer distances. Finally, at the uppermost levels, the pitch and thickness are greatest, and these levels are typically used for power bussing, I/O to the chip, and the clock distribution mesh.

  4. § The known good die problem is where one needs to assemble fully tested dies that meet all the specifications of the chip, but some of these specifications may not be verified in die form.

References

  1. Z. Or-Bach, “Intel vs. Intel,” available at http://www.monolithic3d.com/blog/intel-vs-intel (August 13, 2014).

  2. S.S. Iyer, Proc. IEEE IEDM 33.1 (2012).

  3. J.L. Hennessy, D.A. Patterson, Computer Architecture—A Quantitative Approach (Morgan Kauffman, New York, 1996), p. 374.

    Google Scholar 

  4. J. Handy, Cache Memory Book (Academic Press, San Diego, 1993).

    Google Scholar 

  5. S.S. Iyer, J.E. Barth Jr., P.C. Parries, J.P. Norum, J.P. Rice, L.R. Logan, D. Hoyniak, IBM J. Res. Dev. 49 (2), 333 (2005).

    Article  Google Scholar 

  6. H.Q. Le, W.J. Starke, J.S. Fields, F.P. O’Connell, D.Q. Nguyen, B.J. Ronchetti, W.M. Sauer, E.M. Schwarz, M.T. Vaden, IBM J. Res. Dev. 51 (6), 639 (2007).

    Article  Google Scholar 

  7. S.S. Iyer, G. Freeman, C. Brodsky, A.I. Chou, D. Corliss, S.H. Jain, N. Lustig, V. McGahay, S. Narasimha, J. Norum, K.A. Nummy, P. Parries, S. Sankaran, C.D. Sheraw, P.R. Varanasi, G. Wang, M.E. Weybright, X. Yu, E. Crabbe, P. Agnello, IBM J. Res. Dev. 55 (3), 1 (2011).

    Article  Google Scholar 

  8. C.J.D. Craigie, T. Sheehan, V.N. Johnson, S.L. Burkett, A.J. Moll, W.B. Knowlton, J. Vac. Sci. Technol. B 20 (6), 2229 (2002).

    Article  CAS  Google Scholar 

  9. W.S. Liao, H.N. Chen, K.K. Yen, E.H. Yeh, F.W. Kuo, T.J. Yeh, F. Kuo, C.P. Jou, S. Liu, F.L. Hsueh, H.C. Lin, C.N. Peng, M.J. Wang, W.C. Wu, S.P. Hu, M.F. Chen, S.Y. Hou, S.P. Jeng, C.H. Yu, K.C. Yee, D. Yu, Proc. IEEE Symp. VLSI Technol. C18–19 (2013).

    Google Scholar 

  10. L.F. Miller, IBM J. Res. Dev. 13, 239 (1969).

    Article  CAS  Google Scholar 

  11. O.L. Anderson, H. Christensen, P. Andreatch, J. Appl. Phys. 28, 923 (1959).

    Article  Google Scholar 

  12. Hybrid Memory Cube Consortium, available at http://www.hybridmemory-cube.org.

  13. JEDEC, High Bandwidth Memory DRAM, available at http://bit.ly/1gWBE5E.

  14. G. Van der Plas, P. Limaye, I. Loi, A. Mercha, H. Oprins, C. Torregiani, S. Thijs, D. Linten, M. Stucchi, G. Katti, D. Velenis, V. Cherman, B. Vandevelde, V. Simons, I. De Wolf, R. Labie, D. Perry, S. Bronckers, N. Minas, M. Cupac, W. Ruythooren, J. Van Olmen, A. Phommahaxay, M. de Potter de ten Broeck, A. Opdebeeck, M. Rakowski, B. De Wachter, M. Dehan, M. Nelis, R. Agarwal, A. Pullini, F. Angiolini, L. Benini, W. Dehaene, Y. Travaly, E. Beyne, P. Marchal, IEEE J. Solid-State Circuits 46 (1), 293 (2011).

    Article  Google Scholar 

  15. A. Totta, R.P. Sopher, IBM J. Res. Dev. 13, 226 (1969).

    Article  CAS  Google Scholar 

  16. Semtech, “Semtech and IBM Join Forces to Develop High-Performance ntegrated ADC/DSP Platform Using 3D TSV Technology,” available at http://bit.ly/1niX1vw.

  17. V Sukumaran, Q. Chen, L. Fuhan, N. Kumbhat, T. Bandyopadhyay, H. Chan, S. Min, C. Nopper, V Sundaram, R. Tummala, Proc. IEEE Electron. Compon. Technol. Conf. 557 (2010).

  18. P. Batude, M. Vinet, A. Pouydebasque, C. Le Royer, B. Previtali, C. Tabone, J. Hartmann, L. Sanchez, L. Baud, V. Carron, A. Toffoli, F. Allain, V. Mazzocchi, D. Lafond, S. Deleonibus, O. Faynot, Proc. IEEE Int. Symp. Circuits Syst. 2233 (2011).

  19. H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, R.M. Kito, Y Fukuzumi, M. Sato, Y Nagata, Y. Matsuoka, Y. Iwata, H. Aochi, A. Nitayama, Proc. IEEE Symp. on VLSI Technol. 14 (2007).

  20. R.S. Patti, Proc. IEEE 94 (6), 11214 (2006).

    Article  Google Scholar 

  21. P. Batra, D. LaTulipe, S. Skordas, K. Winstel, C. Kothandaraman, B. Himmel, G. Maier, B. He, D.W. Gamage, J. Golz, W. Lin, T. Vo, D. Priyadarshini, A. Hubbard, K. Cauffman, B. Peethala, J. Barth, T. Kirihata, T. Graves-Abe, N. Robson, S.S. Iyer “Three-Dimensional Wafer Stacking Using Cu TSV Integrated with 45 nm High Performance SOI-CMOS Embedded DRAM Technology,” paper presented at the EEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference, Monterey, CA, October 2013.

  22. S.S. Iyer, A.J. Auberton-Herve, Eds., Silicon Wafer Binding Technology: For VLSI and MEMS Applications (INSPEC, The Institution of Electrical Engineers, London, UK, 2001).

  23. V. Suntharalingam, R. Berger, J.A. Burns, C.K. Chen, C.L. Keast, J.M. Knecht, R.D. Lambert, K.L. Newcomb, D.M. O’Mara, D.D. Rathman, D.C. Shaver, A.M. Soares, C.N. Stevenson, B.M. Tyrrell, K. Warner, B.D. Wheeler, D.-R.W. Yost, D.J. Young, IEEE Int. Solid-State Circuits Conf. Tech. Dig. 48, 356 (2005).

    Google Scholar 

Download references

Acknowledgments

The continued interaction and contributions of all colleagues at IBM, especially Daniel Berger and Gary Patton, are gratefully acknowledged. S.I. would also like to thank Rao Tummala at Georgia Institute of Technology for extensive discussions and insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian S. Iyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, S.S. Three-dimensional integration: An industry perspective. MRS Bulletin 40, 225–232 (2015). https://doi.org/10.1557/mrs.2015.32

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.32

Navigation