Skip to main content

Advertisement

Log in

Magnetic nanoparticles for magnetically guided therapies against neural diseases

  • Biological Interactions of Oxide Nanoparticles: The Good and The Evil
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Neurological pathologies and nerve damage are two problems of significant medical and economic impact because of the hurdles of losing nerve functionality in addition to significant mortality and morbidity, and demanding rehabilitation. There are currently a number of examples of how nanotechnology can provide new solutions for biomedical problems. Current strategies for nerve repair rely on the use of functionalized scaffolds working as “nerve guidance channels” to improve axonal regeneration and to direct axonal re-growth across the nerve lesion site. Since low invasiveness and high selectivity of the growth stimulation are usually conflicting requirements, new approaches are being pursued in order to overcome such limitations. Engineered magnetic nanoparticles (MNPs) have emerged from this need for noninvasive therapies for both positioning and guiding neural cells in response to an external magnetic field. Here, we review the current state of the use of MNPs for neuroprotective and magnetically guided therapies. We discuss some conceivable outcomes of current magnetically driven strategies seeking integrated platforms for regenerative action on damaged tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. J. Pinkernelle, P. Calatayud, G.F. Goya, H. Fansa, G. Keilhoff, BMC Neurosci. 13, 32 (2012).

    Google Scholar 

  2. W. Daly, L. Yao, D. Zeugolis, A. Windebank, A. Pandit, J. R. Soc. Interface 9, 202 (2012).

    Google Scholar 

  3. M. Siemionow, G. Brzezicki, Int. Rev. Neurobiol. 87, 141 (2009).

    Google Scholar 

  4. B.J. Dickson, Science 298, 1959 (2002).

    Google Scholar 

  5. T.S. Wong, S.H. Kang, S.K.Y. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal J. Aizenberg, Nature 477, 443 (2011).

    Google Scholar 

  6. Y. Yan, G.K. Such, A.P.R. Johnston, J.P. Best, F. Caruso, ACS Nano 6, 3663 (2012).

    Google Scholar 

  7. C. Riggio, M.P. Calatayud, M. Giannaccini, B. Sanz, T.E. Torres, R. Fernandez-Pacheco, A. Ripoli, M.R. Ibarra, L. Dente, A. Cuschieri, G.F. Goya, V. Raffa, Nano-medicine (2014) (forthcoming).

  8. D.A. Borton, M. Yin, J. Aceros, A. Nurmikko, J. Neural Eng. 10, 026010 (2013).

    Google Scholar 

  9. D. Kilinc, A. Blasiak, James J. O’Mahony, D.M. Suter, G.U. Lee, Biophys. J. 103, 1120 (2012).

    Google Scholar 

  10. J. Liu, J. Shi, L. Jiang, F. Zhang, L. Wang, S. Yamamoto, M. Takano, M. Chang, H. Zhang, Y. Chen, Appl. Surf. Sci. 258, 7530 (2012).

    Google Scholar 

  11. V. Zablotskii, T. Syrovets, Z.W. Schmidt, A. Dejneka, T. Simmet, Biomaterials 35, 3164 (2014).

    Google Scholar 

  12. K. Yue, R. Guduru, J. Hong, P. Liang, M. Nair, S. Khizroev, PLoS One 7, e44040 (2012).

    Google Scholar 

  13. A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, J.P. Donoghue, S.E. Fraser, J. Lippincott-Schwartz, L.L. Looger, S. Masmanidis, P.L. McEuen, A.V. Nurmikko, H. Park, D.S. Peterka, C. Reid, M.L. Roukes, A. Scherer, M. Schnitzer, T.J. Sejnowski, K.L. Shepard, D. Tsao, G. Turrigiano, P.S. Weiss, C. Xu, R. Yuste, X. Zhuang, ACS Nano 7, 1850 (2013).

    Google Scholar 

  14. P.K. Lakshmi, T.K. Indira, Int. J. Pharm. Sci. Nanotechnol. 3, 8 (2010).

    Google Scholar 

  15. I. Marcos-Campos, L. Asín, T.E. Torres, C. Marquina, A. Tres, M.R. Ibarra, G.F. Goya, Nanotechnology 22, 13 (2011).

    Google Scholar 

  16. P. Tartaj, M. Morales, S. Veintemillas-Verdaguer, T. González-Carreño, C.J. Serna, J. Phys. D: Appl. Phys. 36, R182 (2003).

    Google Scholar 

  17. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 108, 2064 (2008).

    Google Scholar 

  18. J.K. Oh, J.M. Park, Prog. Polym. Sci. 36, 168 (2011).

    Google Scholar 

  19. N. Mizutani, T. Iwasaki, S. Watano, T. Yanagida, T. Kawai, Curr. Appl. Phys. 10, 801 (2010).

    Google Scholar 

  20. F.M. Kievit, O. Veiseh, N. Bhattarai, C. Fang, J.W. Gunn, D. Lee, L.G. Ellenbogen, J.M. Olson, M. Zhang, Adv. Funct. Mater. 19, 2244 (2009).

    Google Scholar 

  21. C. Riggio, M. Pilar Calatayud, C. Hoskins, J. Pinkernelle, B. Sanz, T. Enrique Torres, M. Ricardo Ibarra, L. Wang, G. Keilhoff, G. Fabian Goya, V. Raffa, A. Cuschieri, Int. J. Nanomed. 7, 3155 (2012).

    Google Scholar 

  22. M.P. Calatayud, C. Riggio, V. Raffa, B. Sanz, T.E. Torres, M.R. Ibarra, C. Hoskins, A. Cuschieri, L. Wang, J. Pinkernelle, G. Keilhoff, G.F. Goya, J. Mater. Chem. B 1, 3607 (2013).

    Google Scholar 

  23. C. Riggio, S. Nocentini, M.P. Catalayud, G.F. Goya, A. Cuschieri, V. Raffa, J.A. del Río, Int. J. Mol. Sci. 14, 10852 (2013).

    Google Scholar 

  24. T.T. Sibov, L.F. Pavon, L.A. Miyaki, J.B. Mamani, L.P. Nucci, L.T. Alvarim, P.H. Silveira, L.C. Marti, L. Gamarra, Int. J. Nanomed. 9, 337 (2013).

    Google Scholar 

  25. S. Pilakka-Kanthikeel, V.S.R. Atluri, V. Sagar, S.K. Saxena, M. Nair, PLoS One 8, e62241 (2013).

    Google Scholar 

  26. S. Tenzer, D. Docter, J. Kuharev, A. Musyanovych, V. Fetz, R. Hecht, F. Schlenk, D. Fischer, K. Kiouptsi, C. Reinhardt, K. Landfester, H. Schild, M. Maskos, S.K. Knauer, R.H. Stauber, Nat. Nanotechnol. 8 (10), 772 (2013).

    Google Scholar 

  27. S.R. Saptarshi, A. Duschl, A.L. Lopata, J. Nanobiotechnology 11, 26 (2013).

    Google Scholar 

  28. M.P. Calatayud, B. Sanz, V. Raffa, C. Riggio, M.R. Ibarra, G.F. Goya, Biomaterials 35, 6389 (2014).

    Google Scholar 

  29. D. Eberbeck, M. Kettering, C. Bergemann, P. Zirpel, I. Hilger, L. Trahms, J. Phys. D: Appl. Phys. 43 (40), 405002 (2010).

    Google Scholar 

  30. M.L. Hilda T.R. Wiogo, V. Bulmus, L. Gutiérrez, R.C. Woodward, Langmuir 28, 4346 (2012).

    Google Scholar 

  31. N. Welsch, Y. Lu, J. Dzubiella, M. Ballauf, Polymer 54, 2835e2849 (2013).

    Google Scholar 

  32. D. Bray, J. Cell Sci. 37, 391 (1979).

    Google Scholar 

  33. D. Bray, Dev. Biol. 102, 379 (1984).

    Google Scholar 

  34. D.H. Smith, Prog. Neurobiol. 89, 231 (2009).

    Google Scholar 

  35. J.N. Fass, D.J. Odde, Biophys. J. 85, 623 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Goya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goya, G.F., Calatayud, M.P., Sanz, B. et al. Magnetic nanoparticles for magnetically guided therapies against neural diseases. MRS Bulletin 39, 965–969 (2014). https://doi.org/10.1557/mrs.2014.224

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.224

Navigation