Skip to main content
Log in

MEMS-based thin-film solid-oxide fuel cells

  • Low-Temperature Solid-Oxide Fuel Cells
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Thin-film solid-oxide fuel cells (TF-SOFCs) fabricated using microelectromechanical systems (MEMS) processing techniques not only help lower the cell operating temperature but also provide a convenient platform for studying cathodic losses. Utilizing these platforms, cathode kinetics can be enhanced dramatically by engineering the microstructure of the cathode/electrolyte interface by increasing the surface grain-boundary density. Nanoscale secondary ion mass spectrometry and high-resolution transmission electron microscopy studies have shown that oxygen exchange at electrolyte surface grain boundaries is facilitated by a high population of oxide-ion vacancies segregating preferentially to the grain boundaries. Furthermore, three-dimensional structuring of TF-SOFCs enabled by various lithography methods also helps increase the active surface area and enhance the surface exchange reaction. Although their practical prospects are yet to be verified, MEMS-based TF-SOFC platforms hold the potential to provide high-performance for low-temperature SOFC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. R. O’Hayre, S.W. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals (2nd edition) (Wiley, NJ, 2009).

    Google Scholar 

  2. S.B. Adler, Chem. Rev. 104, 4791 (2004).

    Google Scholar 

  3. H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, F.B. Prinz, J. Electrochem. Soc. 154, B20 (2007).

    Google Scholar 

  4. P.-C. Su, C.-C. Chao, J.H. Shim, R. Fasching, F.B. Prinz, Nano Lett. 8, 2289 (2008).

    Google Scholar 

  5. P.-C. Su, F.B. Prinz, Electrochem. Commun. 16, 77 (2012).

    Google Scholar 

  6. J.H. Shim, C.-C. Chao, H. Huang, F.B. Prinz, Chem. Mater. 19, 3850 (2007).

    Google Scholar 

  7. J.H. Shim, J.S. Park, J. An, T.M. Gür, S. Kang, F.B. Prinz, Chem. Mater. 21, 3290 (2009).

    Google Scholar 

  8. C.-C. Chao, C.-M. Hsu, Y. Cui, F.B. Prinz, ACS Nano 5, 5692 (2011).

    Google Scholar 

  9. Y.B. Kim, T.M. Gür, S. Kang, H.-J. Jung, R. Sinclair, F.B. Prinz, Electrochem. Commun. 13, 403 (2011).

    Google Scholar 

  10. P.-C. Su, F.B. Prinz, Microelectron. Eng. 88, 2405 (2011).

    Google Scholar 

  11. Z. Fan, J. An, A. Iaucu, F.B. Prinz, J. Power Sources 218, 187 (2012).

    Google Scholar 

  12. J. An, Y.B. Kim, J. Park, T.M. Gür, F.B. Prinz, Nano Lett. 13, 4551 (2013).

    Google Scholar 

  13. C.-C. Chao, J.S. Park, X. Tian, J.H. Shim, T.M. Gür, F.B. Prinz, ACS Nano 7, 2186 (2013).

    Google Scholar 

  14. Y. Tang, K. Stanley, J. Wu, D. Ghosh, J. Zhang, J. Micromech. Microeng. 15, S185 (2005).

    Google Scholar 

  15. A. Evans, A. Bieberle-Hütter, J.L.M. Rupp, L.J. Gauckler, J. Power Sources 194, 119 (2009).

    Google Scholar 

  16. A.C. Johnson, B.-K. Lai, H. Xiong, S. Ramanathan, J. Power Sources 186, 252 (2009).

    Google Scholar 

  17. Y. Takagi, B.-K. Lai, K. Kerman, S. Ramanathan, Energy Environ. Sci. 4, 3473 (2011).

    Google Scholar 

  18. B.-K. Lai, K. Kerman, S. Ramanathan, J. Power Sources 196, 6299 (2011).

    Google Scholar 

  19. M. Tsuchiya, B.-K. Lai, S. Ramanathan, Nat. Nanotechnol. 6, 282 (2011).

    Google Scholar 

  20. J.H. Joo, G.M. Choi, J. Power Sources 182, 589 (2008).

    Google Scholar 

  21. U.P. Muecke, D. Beckel, A. Bernard, A. Bieberle-Hutter, S. Graf, A. Infortuna, P. Müller, J.L.M. Rupp, J. Schneider, L.J. Gauckler, Adv. Funct. Mater. 18, 1 (2008).

    Google Scholar 

  22. S. Kang, P. Heo, Y.H. Lee, J. Ha, I. Chang, S.W. Cha, Electrochem. Commun. 13, 374 (2011).

    Google Scholar 

  23. Y.-I. Park, P.C. Su, S.W. Cha, Y. Saito, F.B. Prinz, J. Electrochem. Soc. 153, A431 (2006).

    Google Scholar 

  24. C.-W. Kwon, J.-W. Son, J.-H. Lee, H.-M. Kim, H.-W. Lee, K.-B. Kim, Adv. Funct. Mater. 21, 1154 (2011).

    Google Scholar 

  25. C.-W. Kwon, J.-I. Lee, K.-B. Kim, H.-W. Lee, J.-H. Lee, J.-W. Son, J. Power Sources 210, 178 (2012).

    Google Scholar 

  26. S.B. Ha, P.-C. Su, S.W. Cha, J. Mater. Chem. A 1, 9645 (2013).

    Google Scholar 

  27. M. Motoyama, C.-C. Chao, J. An, H.J. Jung, T.M. Gür, F.B. Prinz, ACS Nano 8, 340 (2014).

    Google Scholar 

  28. K. Kerman, B.-K. Lai, S. Ramanathan, Adv. Energy Mater. 2, 656 (2012).

    Google Scholar 

  29. D. Beckel, A. Bieberle-Hütter, A. Harvey, A. Infortuna, U.P. Muecke, M. Prestat, J.L.M. Rupp, L.J. Gauckler, J. Power Sources 172, 325 (2007).

    Google Scholar 

  30. J.H. Shim, S. Kang, S.W. Cha, W. Lee, Y.B. Kim, J.S. Park, T.M. Gür, F.B. Prinz, C.-C. Chao, J. An, J. Mater. Chem. A 1, 12695 (2013).

    Google Scholar 

  31. K. Kerman, S. Ramanathan, J. Mater. Res. 29, 320 (2014).

    Google Scholar 

  32. W. Lee, H.J. Jung, M.H. Lee, Y.-B. Kim, J.S. Park, R. Sinclair, F.B. Prinz, Adv. Funct. Mater. 22, 965 (2012).

    Google Scholar 

  33. Y.B. Kim, T.P. Holme, T.M. Gür, F.B. Prinz, Adv. Funct. Mater. 21, 4684 (2011).

    Google Scholar 

  34. Y.B. Kim, J.H. Shim, T.M. Gür, F.B. Prinz, J. Electrochem. Soc. 158, B1453 (2011).

    Google Scholar 

  35. Y.B. Kim, J.S. Park, T.M. Gür, F.B. Prinz, J. Power Sources 196, 10550 (2011).

    Google Scholar 

  36. K. Bae, D.Y. Jang, H.J. Jung, J.W. Kim, J.-W. Son, J.H. Shim, J. Power Sources 248, 1163 (2014).

    Google Scholar 

  37. Z. Fan, F.B. Prinz, Nano Lett. 11, 2202 (2011).

    Google Scholar 

  38. Z. Fan, C.-C. Chao, F. Hossei-Babaei, F.B. Prinz, J. Mater. Chem. 21, 10903 (2011).

    Google Scholar 

  39. J. An, Y.B. Kim, J.S. Park, J.H. Shim, T.M. Gür, F.B. Prinz, J. Vac. Sci. Technol. A 30, 01A161 (2012).

    Google Scholar 

  40. P. Babilo, S.M. Haile, J. Am. Ceram. Soc. 88, 2362 (2005).

    Google Scholar 

  41. J. An, Y.B. Kim, F.B. Prinz, Phys. Chem. Chem. Phys. 15, 7520 (2013).

    Google Scholar 

  42. J.H. Shim, J.S. Park, T.P. Holme, K. Crabb, W. Lee, Y.B. Kim, X. Tian, T.M. Gür, F.B. Prinz, Acta Mater. 60, 1 (2012).

    Google Scholar 

  43. T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, T. Kawada, T. Kato, Solid State Ionics 127, 55 (2000).

    Google Scholar 

  44. J. Fleig, Annu. Rev. Mater. Res. 33, 361 (2003).

    Google Scholar 

  45. H.B. Lee, F.B. Prinz, W. Cai, Acta Mater. 61, 3872 (2013).

    Google Scholar 

  46. J. An, J.S. Park, A.L. Koh, H.B. Lee, H.J. Jung, J. Schoonman, R. Sinclair, T. M. Gür, F.B. Prinz, Sci. Rep. 3, 2680 (2013).

    Google Scholar 

  47. J. An, A.L. Koh, J.S. Park, R. Sinclair, T.M. Gür, F.B. Prinz, J. Phys. Chem. Lett. 4, 1156 (2013).

    Google Scholar 

  48. C.-C. Chao, Y.B. Kim, F.B. Prinz, Nano Lett. 9, 3626 (2009).

    Google Scholar 

  49. T. Ryll, H. Galinski, L. Schlagenhauf, P. Elser, J.L.M. Rupp, A. Bieberle-Hütter, L.J. Gauckler, Adv. Funct. Mater. 21, 565 (2011).

    Google Scholar 

Download references

Acknowledgments

Work at Stanford University by J.A., T.M.G., and F.B.P. was supported, in part, by the Center on Nanostructuring for Efficient Energy Conversion (CNEEC), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001060. S.J.H. is also grateful to the Fusion Research Program for Green Technologies of the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science, and Technology (MEST) (Grant No. NRF-2011–0019300) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihwan An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, J., Shim, J.H., Kim, YB. et al. MEMS-based thin-film solid-oxide fuel cells. MRS Bulletin 39, 798–804 (2014). https://doi.org/10.1557/mrs.2014.171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.171

Navigation