Skip to main content

Advertisement

Log in

Mechanics of stretchable electronics and soft machines

  • Materials for stretchable electronics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In the emerging field of soft machines, large deformation of soft materials is harnessed to provide functions such as regulating flow in microfluidics, shaping light in adaptive optics, harvesting energy from ocean waves, and stretching electronics to interface with living tissues. Soft materials, however, do not provide all of the requisite functions; rather, soft machines are mostly hybrids of soft and hard materials. In addition to requiring stretchable electronics, soft machines often use soft materials that can deform in response to stimuli other than mechanical forces. Dielectric elastomers deform under a voltage. Hydrogels swell in response to changes in humidity, pH, temperature, and salt concentration. How does mechanics meet geometry, chemistry, and electrostatics to generate large deformation? How do molecular processes affect the functions of transducers? How efficiently can materials convert energy from one form to another? These questions are stimulating intriguing and useful advances in mechanics. This review highlights the mechanics that enables the creation of soft machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. A.C. Guyton, J.E. Hall, Textbook of Medical Physiology (Saunders, Oxford, UK, 2000).

  2. F. Carpi, G. Frediani, S. Turco, D. De Rossi, Adv. Functional Mater. 21, 4152 (2011).

    Google Scholar 

  3. M.A. Zwieniecki, P.J. Melcher, N.M. Holbrook, Science 291, 1059 (2001).

  4. D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Nature 404, 588 (2000).

  5. S.Q. Cai, Y.C. Lou, P. Ganguly, A. Robisson, Z.G. Suo, J. Appl. Phys. 107, 103535 (2010).

  6. A. Sidorenko, T. Krupenkin, A. Taylor, P. Fratzl, J. Aizenberg, Science 315, 487 (2007).

  7. F. Masuda, in Superabsorbent Polymers, ACS Symposium Series, Vol. 573. (1994), p. 88.

  8. P.I. Hsu, R. Bhattacharya, H. Gleskova, M. Huang, Z. Xi, Z. Suo, S. Wagner, J.C. Sturm, Appl. Phys. Lett. 81, 1723 (2002).

  9. Z.G. Suo, J.J. Vlassak, S. Wagner, Chin. Particuol. 3, 321 (2005).

  10. Z.G. Suo, E.Y. Ma, H. Gleskova, S. Wagner, Appl. Phys. Lett. 74, 1177 (1999).

  11. H.C. Ko, M.P. Stoykovich, J.Z. Song, V. Malyarchuk, W.M. Choi, C.J. Yu, J.B. Geddes, J.L. Xiao, S.D. Wang, Y.G. Huang, J.A. Rogers, Nature 454, 784 (2008).

  12. R. Bhattacharya, A. Salomon, S. Wagner, J. Electrochem. Soc. 153, G259 (2006).

  13. H. Gleskova, S. Wagner, Z. Suo, Appl. Phys. Lett. 75, 3011 (1999).

  14. N.S. Lu, J. Yoon, Z.G. Suo, Int. J. Mater. Res. 98, 717 (2007).

  15. S.P. Lacour, S. Wagner, R.J. Narayan, T. Li, Z. Suo, J. Appl. Phys. 100, 014913 (2006).

  16. D.H. Kim, Y.S. Kim, J. Wu, Z.J. Liu, Jizhou Song, H.S. Kim, Y.Y. Huang, K.C. Hwang, J.A. Rogers, Adv. Mater. 21, 3703 (2009).

  17. J.Y. Sun, N.S. Lu, J. Yoon, K.H. Oh, Z.G. Suo, J.J. Vlassak, J. Mater. Res. 24, 3338 (2009).

  18. D.S. Gray, J. Tien, C.S. Chen, Adv. Mater. 16, 393 (2004).

  19. S.P. Lacour, S. Wagner, Z.Y. Huang, Z.G. Suo, Appl. Phys. Lett. 82, 2404 (2003).

  20. D.Y. Khang, H.Q. Jiang, Y.G. Huang, J.A. Rogers, Science 311, 208 (2006).

  21. T. Li, Z.G. Suo, S.P. Lacour, S. Wagner, J. Mater. Res. 20, 3274 (2005).

  22. T. Li, Z.Y. Huang, Z.C. Xi, S.P. Lacour, S. Wagner, Z.G. Suo, Mech. Mater. 37, 261 (2005).

  23. N.S. Lu, X. Wang, Z.G. Suo, J.J. Vlassak, Appl. Phys. Lett. 91, 221909 (2007).

  24. R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M. Whitesides, PNAS, doi/10.1073/pnas.1116564108.

  25. R. Pelrine, R. Kornbluh, Q.B. Pei, J. Joseph, Science 287, 836 (2000).

  26. F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers (Elsevier, Oxford, UK, 2008).

  27. P. Brochu, Q.B. Pei, Macromol. Rapid Commun. 31, 10 (2010).

  28. F. Carpi, S. Bauer, D. De Rossi, Science 330, 1759 (2010).

  29. R.A. Toupin, J. Ration. Mech. Anal. 5, 849 (1956).

  30. N. Goulbourne, E. Mockensturm, M. Frecker, J. Appl. Mech. 72, 899 (2005).

  31. R.M. McMeeking, C.M. Landis, J. Appl. Mech. 72, 581 (2005).

  32. A. Dorfmann, R.W. Ogden, Acta Mech. 174, 167 (2005).

  33. Z.G. Suo, Acta Mech. Solida Sin. 23, 549 (2010).

  34. C. Keplinger, M. Kaltenbrunner, N. Arnold, S. Bauer, PNAS 107, 4505 (2010).

  35. G. Kofod, P. Sommer-Larsen, R. Kornbluh, R. Pelrine, J. Intell. Mater. Sys. Struct. 14, 787 (2003).

  36. X.H. Zhao, W. Hong, Z.G. Suo, Phys. Rev. B 76, 134113 (2007).

  37. P. Lochmatter, G. Kovacs, S. Michel, Sens. Actuators, A 135, 748 (2007).

  38. Q.M. Zhang, V. Bharti, X. Zhao, Science 280, 2101 (1998).

  39. S.M. Ha, W. Yuan, Q.B. Pei, R. Pelrine, S. Stanford, Adv. Mater. 18, (2006).

  40. R. Shankar, T.K. Ghosh, R.J. Spontak, Adv. Mater. 19, 2218 (2007).

  41. K.H. Stark, C.G. Garton, Nature 176, 1225 (1955).

  42. X.H. Zhao, Z.G. Suo, Phys. Rev. Lett. 104, 178302 (2010).

  43. C. Keplinger, T.F. Li, R. Baumgartner, Z.G. Suo, S. Bauer, Soft Matter 8, 285 (2012).

  44. M. Wissler, E. Mazza, Sens. Actuators, A 120, 184 (2005).

  45. X.H. Zhao, Z.G. Suo, Appl. Phys. Lett. 93, 251902 (2008).

  46. B. O’Brien, T. McKay, E. Calius, S. Xie, I. Anderson, Appl. Phys. A 94, 507 (2009).

  47. P. Calvert, Adv. Mater. 21, 743 (2009).

  48. W. Hong, X.H. Zhao, J.X. Zhou, Z.G. Suo, J. Mech. Phys. Solids 56, 1793 (2008).

  49. H. Meng, J.L. Hu, J. Int. Mater. Sys. Struct. 21, 859 (2010).

  50. M. Kaltenbrunner, G. Kettlgruber, C. Siket, R. Schwodiauer, S. Bauer, Adv. Mater. 22, 2065 (2010).

  51. Y. Forterre, J.M. Skotheim, J. Dumains, L. Mahadevan, Nature 433, 421 (2005).

  52. H.W. Lee, C.G. Xia, N.X. Fang, Soft Matter 6, 4342 (2010).

  53. J. des Cloizeaux, G. Jannink, Polymers in Solution (Oxford University Press, Oxford, UK, 1990).

  54. W. Hong, Z.S. Liu, Z.G. Suo, Int. J. Solids Struct. 46, 3282 (2009).

  55. R. Marcombe, S.Q. Cai, W. Hong, X.H. Zhao, Y. Lapusta, Z.G. Suo, Soft Matter 6, 784 (2010).

  56. S.A. Chester, L. Anand, J. Mech. Phys. Solids 58, 1879 (2010).

  57. M. Galli, M.L. Oyen, CMES 48, 241 (2009).

  58. Y.H. Hu, X.H. Zhao, J.J. Vlassak, Z.G. Suo, Appl. Phys. Lett. 96, 121904 (2010).

  59. S.Q. Cai, Z.G. Suo, EPL 97, 34009 (2012).

    Google Scholar 

Download references

Acknowledgments

The work is supported by NSF through grant CMMI-0800161 and MRSEC, by the U.S. Army Research Office through contract W911NF-09-1-0476, and by DARPA through contract W91 1NF-10-1-0113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Suo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suo, Z. Mechanics of stretchable electronics and soft machines. MRS Bulletin 37, 218–225 (2012). https://doi.org/10.1557/mrs.2012.32

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.32

Navigation