Skip to main content

Advertisement

Log in

Liquid-state pyroelectric energy harvesting

  • Original Research
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

A liquid-state pyroelectric energy harvester is described and a remarkable capacity to convert a thermal gradient into electrical energy is demonstrated.

Increasing the sustainability of energy generation can be pursued by harvesting extremely low enthalpy sources: low temperature differences between cold and hot reservoirs are easily achieved in every industrial process, both at large and small scales, in plants as well as in small appliances, vehicles, natural environments, and human bodies. This paper presents the assessment and efficiency estimate of a liquid-state pyroelectric energy harvester, based on a colloid containing barium titanate nanoparticles and ferrofluid as a stabilizer. The liquid is set in motion by an external pump to control velocity, in a range similar to the one achieved by Rayleigh–Bénard convection, and the colloid reservoir is heated. The colloid is injected into a Fluorinated Ethylene Propylene pipe where titanium electrodes are placed to collect electrical charges generated by pyroelectricity on the surface of the nanoparticles, reaching 22.4% of the ideal Carnot efficiency of a thermal machine working on the same temperature drop. The maximum extracted electrical power per unit of volume is above 7 mW/m3 with a ΔT between electrodes of 3.9 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table 1
Table 2
Figure 3
Figure 4
Figure 5
Table 3
Table 4
Figure 6

Similar content being viewed by others

References

  1. International Energy Agency: World Energy Outlook 2019 (EIA GOV, 2019), Washington, DC.

    Book  Google Scholar 

  2. British Petroleum Company: BP Statistical Review of World Energy, 68th ed. (British Petroleum Co., 2019), London.

    Google Scholar 

  3. Forman C., Muritala I.K., Pardemann R., and Meyer B.: Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 57, 1568–1579 (2016).

    Article  Google Scholar 

  4. Park C., Lee H., Hwang Y., and Radermacher R.: Recent advances in vapor compression cycle technologies. Int. J. Refrig. 60, 118–134 (2015).

    Article  Google Scholar 

  5. Elsheniti M.B., Elsamni O.A., Al-dadah R.K., Mahmoud S., Elsayed E., and Saleh K.: Adsorption refrigeration technologies. Sustain. Air Cond. Syst., 71–94 (2018).

    Google Scholar 

  6. Zhang X., He M., and Zhang Y.: A review of research on the Kalina cycle. Renew. Sustain. Energy Rev. 16, 5309–5318 (2012).

    Article  CAS  Google Scholar 

  7. Yamamoto T., Furuhata T., Arai N., and Mori K.: Design and testing of the organic rankine cycle. Energy 26, 239–251 (2001).

    Article  CAS  Google Scholar 

  8. Garofalo E., Bevione M., Cecchini L., Matiussi F., and Chiolerio A.: Waste heat to power: Technologies, current applications and future potential.Energy Technology (inpress). https://doi.org/10.1002/ente.202000413.

  9. Torfs T., Leonov V., and Hoof C.V. Body-Heat Powered Autonomous Pulse Oximeter, 5th IEEE Conference on Sensors (2006); pp. 22–25.

  10. Leonov V.: Simulation of maximum power in the wearable thermoelectric generator with a small thermop. Microsyst. Technol. 17, 495–504 (2011).

    Article  Google Scholar 

  11. Leonov V.: Thermoelectric energy harvesting of human body heat for wearable sensors. In IEEE Sensors Journal, Vol. 13 (2013); pp. 2284–2291.

    Article  Google Scholar 

  12. Leonov V., Torfs T., Fiorini P., and Hoof C.V.: Thermoelectric converters of human warmth for self-powered wireless sensor nodes. In IEEE SENSORS JOURNAL Vol. 7 (2007); pp. 650–657.

    Article  Google Scholar 

  13. Xue H., Yang Q., Wang D., Luo W., Wang W., Lin M., Liang D., and Luo Q.: A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 38, 147–154 (2017).

    Article  CAS  Google Scholar 

  14. Ryu H. and Kim S.-W.: Emerging pyroelectric nanogenerators to convert thermal energy into electrical energy. Small 1903469, 1–21 (2019).

    Google Scholar 

  15. Chiolerio A., Garofalo E.,Bevione M., and Cecchini L.: Dispositivo per la conversione di energia termica in energia elettrica. Italian patent application (27/07/2020) n. IT 102020000018097.

  16. Garofalo E., Cecchini L., Bevione M., Chiolerio A.: Triboelectric characterization of colloidal TiO2 for energy harvesting applications. MDPI 10(6), 1181 (2020). doi:10.3390/nano10061181.

    CAS  Google Scholar 

  17. Chiolerio A. and Quadrelli M.B.: Colloidal stems. Energy Technol. 7, 1–30 (2019).

    Article  Google Scholar 

  18. Isse A.: Crystal Hybridized Pyro-Piezoelectric Ferrofluidic Harvester. Available at: https://arxiv.org/ftp/arxiv/papers/1809/1809.09694.pdf (accessed September 2020).

  19. Jin L., Zhang Y., Yu Y., Chen Z., Li Y., Cao M., Che Y., and Yao J.: Self-powered colloidal wurtzite-structure quantum dots photodetectors based on photoinduced-pyroelectric effect. Adv. Opt. Mater. 1800639, 1–8 (2018).

    Google Scholar 

  20. Materials I.A.: Barium titanate (barium titanium oxide, BaTiO3) powder. Adv. Mater., Available at: http://www.advancedmaterials.us/5622-ON4.htm (Accessed October 2020)

  21. Hughes A.: The Einstein relation between relative viscosity and volume concentration of suspensions of spheres. Nature 173, 1089–1090 (1954).

    Article  Google Scholar 

  22. Angaitkar J.N. and Shende D.A.T.: Temperature dependent dynamic (absolute) scosity of Oil. Int. J. Eng. Innovative Technol. 3, 449–454 (2008).

    Google Scholar 

  23. Harms T.M., Jog M.A., and Manglik R.M.: Effects of temperature dependent viscosity variations and boundary conditions on fully developed laminar forced convection in a semicircular duct. J. Heat Transfer 120, 600–604 (1998).

    Article  Google Scholar 

  24. Lang S.B.: Sourcebook of pyroelectricity (Gordon and Breach Science Publishers, 1974), London.

    Google Scholar 

  25. Srinivasan M.: Pyroelectric materials. Bull. Mater. Sci. 6, 317–325 (1984).

    Article  CAS  Google Scholar 

  26. Jachalke S., Mehner E., Stöcker H., Hanzig J., Sonntag M., Weigel T., Leisegang T., and Meyer D.: How to measure the pyroelectric coefficient. Appl. Phys. Rev. 021303, 4 (2017).

    Google Scholar 

  27. Xie J.: Experimental and Numerical Investigation on Pyroelectric Energy Scavenging (Virginia Commonwealth University, Virginia Commonwealth, Richmond, 2007).

    Google Scholar 

  28. Ghaednia H. and Jackson R.L.: The effect of nanoparticles on the real area of contact, friction and wear. J. Tribol. 135, 1–10 (2013).

    Article  Google Scholar 

  29. Wadwalkar S.S., Jackson R.L., and Kogut L.: A study of the elastic-plastic deformation of heavily deformed spherical contacts. J. Eng. Tribol. 224, 1091–1102 (2010).

    Google Scholar 

  30. Jackson R.L. and Green I.: A finite element study of elasto-plastic hemispherical contact against a rigid flat. J. Tribol. 127, 343–354 (2005).

    Article  Google Scholar 

  31. Trzepiecinski T. and Gromada M.: Characterization of mechanical properties of barium titanate ceramics with different grain sizes. Mater. Sci.- Pol. 36, 151–156 (2018).

    Article  CAS  Google Scholar 

  32. Cheng B.L., Gabbay M., Duffy W., and Fantozzi G.: Mechanical loss and Young’s modulus associated with phase transitions in barium titanate based ceramics. J. Mater. Sci. 36, 4951–4955 (1996).

    Article  Google Scholar 

  33. Yuan X. and Yang F.: Energy transfer in pyroelectric material. In Heat Conduction: Basic Research, V.S. Vikhrenko, ed. (InTech, Croatia, 2011), pp. 229–248.

    Google Scholar 

  34. Ertuğ B.: The overview of the electrical properties of barium titanate. Am. J. Eng. Res. 2, 1–7 (2013).

    Google Scholar 

  35. Hemrajani R.R. and Tatterson G.B.: Mechanically stirred vessels. In Handbook of Industrial Mixing: Science and Practice, Chapter 6, E.L. Paul, V.A. Atiemo-Obeng and S.M. Kresta, eds. (John Wiley & Sons, Inc., 2003), pp. 345–390.

    Chapter  Google Scholar 

  36. Buongiorno J.: Convective transport in nanofluids. J. Heat Transfer 128, 240–250 (2006).

    Article  Google Scholar 

  37. Mousavi N.S. and Kumar S.: Effective heat capacity of ferrofluids e Analytical approach. Int. J. Therm. Sci. 84, 267–274 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chiolerio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bevione, M., Garofalo, E., Cecchini, L. et al. Liquid-state pyroelectric energy harvesting. MRS Energy & Sustainability 7, 38 (2020). https://doi.org/10.1557/mre.2020.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2020.39

Keywords

Navigation