Skip to main content
Log in

Towards the directed evolution of protein materials

  • Synthetic Biology Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Protein-based materials are a powerful instrument for a new generation of biological materials, with many chemical and mechanical capabilities. Through the manipulation of DNA, researchers can design proteins at the molecular level, engineering a vast array of structural building blocks. However, our capability to rationally design and predict the properties of such materials is limited by the vastness of possible sequence space. Directed evolution has emerged as a powerful tool to improve biological systems through mutation and selection, presenting another avenue to produce novel protein materials. In this prospective review, we discuss the application of directed evolution for protein materials, reviewing current examples and developments that could facilitate the evolution of protein for material applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. A.A. Cheng and T.K. Lu: Synthetic biology: an emerging engineering discipline. Annu. Rev. Biomed. Eng. 14, 155–178 (2012).

    Article  CAS  Google Scholar 

  2. Y.-J. Chen. P. Liu, A.A.K. Nielsen, J.A.N. Brophy, K. Clancy, T. Peterson, and C.A. Voigt: Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10, 659–664 (2013).

    Article  CAS  Google Scholar 

  3. A.A.K. Nielsen, B.S. Der, J. Shin, P. Vaidyanathan, V. Paralanov, E.A. Strychalski, D. Ross, D. Densmore, and C.A. Voigt: Genetic circuit design automation. Science 352, aac7341 (2016).

    Article  Google Scholar 

  4. K.M. Esvelt and H.H. Wang: Genome-scale engineering for systems and synthetic biology. Mol. Syst. Biol. 9, 641 (2013).

    Article  Google Scholar 

  5. M.T. Mee, J.J. Collins, G.M. Church, and H.H. Wang: Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. USA 111, E2149–E2156 (2014).

    Article  CAS  Google Scholar 

  6. M. Elowitz and W.A. Lim: Build life to understand it. Nature 468, 889–890 (2010).

    Article  CAS  Google Scholar 

  7. C.J. Paddon, P.J. Westfall, D.J. Pitera, K. Benjamin, K. Fisher, D. McPhee, M.D. Leavell, A. Tai, A. Main, D. Eng, D.R. Polichuk, K.H. Teoh, D.W. Reed, T. Treynor, J. Lenihan, H. Jiang, M. Fleck, S. Bajad, G. Dang, D. Dengrove, D. Diola, G. Dorin, K.W. Ellens, S. Fickes, J. Galazzo, S.P. Gaucher, T. Geistlinger, R. Henry, M. Hepp, T. Horning, T. Iqbal, L. Kizer, B. Lieu, D. Melis, N. Moss, R. Regentin, S. Secrest, H. Tsuruta, R. Vazquez, L.F. Westblade, L. Xu, M. Yu, Y. Zhang, L. Zhao, J. Lievense, P.S. Covello, J.D. Keasling, K.K. Reiling, N.S. Renninger, and J.D. Newman: High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).

    Article  CAS  Google Scholar 

  8. P. Ball: Synthetic biology—Engineering nature to make materials. MRS Bull. 43, 477–484 (2018).

    Article  Google Scholar 

  9. R.A. Le Feuvre and N.S. Scrutton: A living foundry for synthetic biological materials: a synthetic biology roadmap to new advanced materials. Synth. Syst. Biotechnol. 3, 105–112 (2018).

    Article  Google Scholar 

  10. M.K. Rice and W.C. Ruder: Creating biological nanomaterials using synthetic biology. Sci. Technol. Adv. Mater. 15, 014401 (2013).

    Article  Google Scholar 

  11. S.R. MacEwan and A. Chilkoti: Applications of elastin-like polypeptides in drug delivery. J. Controlled Release 190, 314–330 (2014).

    Article  CAS  Google Scholar 

  12. K.G. DeFrates, R. Moore, J. Borgesi, G. Lin, T. Mulderig, V. Beachley, and X. Hu: Protein-based fiber materials in medicine: a review. Nanomaterials (Basel, Switz.) 8, 457 (2018).

    Article  Google Scholar 

  13. N.H. Romano, D. Sengupta, C. Chung, and S.C. Heilshorn: Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix. Biochim. Biophys. Acta 1810, 339–349 (2011).

    Article  CAS  Google Scholar 

  14. G. Chan and D.J. Mooney: New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol. 26, 382–392 (2008).

    Article  CAS  Google Scholar 

  15. J.M. Caves, V.A. Kumar, A.W. Martinez, J. Kim, C.M. Ripberger, C.A. Haller, and E.L. Chaikof: The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials 31, 7175–7182 (2010).

    Article  CAS  Google Scholar 

  16. C. Gilbert and T. Ellis: Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth. Biol. 8, 1–15 (2019).

    Article  CAS  Google Scholar 

  17. P.Q. Nguyen, N.-M.D. Courchesne, A. Duraj-Thatte, P. Praveschotinunt, and N.S. Joshi: Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, 1704847 (2018).

    Article  Google Scholar 

  18. S.E. Naleway, M.M. Porter, J. McKittrick, and M.A. Meyers: Structural design elements in biological materials: application to bioinspiration. Adv. Mater. 27, 5455–5476 (2015).

    Article  CAS  Google Scholar 

  19. K.A. Dill and J.L. MacCallum: The protein-folding problem, 50 years on. Science 338, 1042–1046 (2012).

    Article  CAS  Google Scholar 

  20. R.E. Cobb, N. Sun, and H. Zhao: Directed evolution as a powerful synthetic biology tool. Methods 60, 81–90 (2013).

    Article  CAS  Google Scholar 

  21. J.C.M. van Hest and D.A. Tirrell: Protein-based materials, toward a new level of structural control. Chem. Commun. 1897–1904 (2001).

    Google Scholar 

  22. Y.J. Yang, A.L. Holmberg, and B.D. Olsen: Artificially engineered protein polymers. Annu. Rev. Chem. Biomol. Eng. 8, 549–575 (2017).

    Article  CAS  Google Scholar 

  23. L. Yang, A. Liu, S. Cao, R.M. Putri, P. Jonkheijm, and J.J.L.M. Cornelissen: Self-assembly of proteins: towards supramolecular materials. Chem.–Eur. J. 22, 15570–15582 (2016).

    Article  CAS  Google Scholar 

  24. M.S. Ekiz, G. Cinar, M.A. Khalily, and M.O. Guler: Self-assembled peptide nanostructures for functional materials. Nanotechnology 27, 402002 (2016).

    Article  Google Scholar 

  25. B.O. Okesola and A. Mata: Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem. Soc. Rev. 47, 3721–3736 (2018).

    Article  CAS  Google Scholar 

  26. C. Vepari and D.L. Kaplan: Silk as a biomaterial. Prog. Polym. Sci. 32, 991–1007 (2007).

    Article  CAS  Google Scholar 

  27. O. Tokareva, V.A. Michalczechen-Lacerda, E.L. Rech, and D.L. Kaplan: Recombinant DNA production of spider silk proteins. Microb. Biotechnol. 6, 651–663 (2013).

    Article  CAS  Google Scholar 

  28. Q. Peng, Y. Zhang, L. Lu, H. Shao, K. Qin, X. Hu, and X. Xia: Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Sci. Rep. 6, 36473 (2016).

    Article  CAS  Google Scholar 

  29. C.L. Craig: Evolution of arthropod silks. Annu. Rev. Entomol. 42, 231–267 (1997).

    Article  CAS  Google Scholar 

  30. F. Vollrath and P. Selden: The role of behavior in the evolution of spiders, silks, and webs. Annu. Rev. Ecol. Evol. Syst. 38, 819–846 (2007).

    Article  Google Scholar 

  31. X. Hu, K. Vasanthavada, K. Kohler, S. McNary, A.M.F. Moore, and C.A. Vierra: Molecular mechanisms of spider silk. Cell. Mol. Life Sci. 63, 1986–1999 (2006).

    CAS  Google Scholar 

  32. L. Römer and T. Scheibel: The elaborate structure of spider silk. Prion 2, 154–161 (2008).

    Article  Google Scholar 

  33. L.P. Gage and R.F. Manning: Internal structure of the silk fibroin gene of Bombyx mori. I. The fibroin gene consists of a homogeneous alternating array of repetitious crystalline and amorphous coding sequences. J. Biol. Chem. 255, 9444–9450 (1980).

    Article  CAS  Google Scholar 

  34. K.M. Rudall and W. Kenchington: Arthropod silks: the problem of fibrous proteins in animal tissues. Annu. Rev. Entomol. 16, 73–96 (1971).

    Article  CAS  Google Scholar 

  35. A. Rising, H. Nimmervoll, S. Grip, A. Fernandez-Arias, E. Storckenfeldt, D.P. Knight, F. Vollrath, and W. Engström: Spider silk proteins— mechanical property and gene sequence. Zool. Sci. 22, 273–281 (2005).

    Article  CAS  Google Scholar 

  36. T. Kowalczyk, K. Hnatuszko-Konka, A. Gerszberg, and A.K. Kononowicz: Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World J. Microbiol. Biotechnol. 30, 2141–2152 (2014).

    Article  CAS  Google Scholar 

  37. W. Hassouneh, T. Christensen, and A. Chilkoti: Elastin-like Polypeptides as a Purification Tag for Recombinant Proteins. Curr. Protoc. Protein Sci. Editor. Board John E Coligan Al CHAPTER, Unit–6.11 (2010).

    Google Scholar 

  38. R. Saxena and M.J. Nanjan: Elastin-like polypeptides and their applications in anticancer drug delivery systems: a review. Drug Deliv. 22, 156–167 (2015).

    Article  CAS  Google Scholar 

  39. K.E. Inostroza-Brito, E. Collin, O. Siton-Mendelson, K.H. Smith, A. Monge-Marcet, D.S. Ferreira, R.P. Rodríguez, M. Alonso, J.C. Rodríguez-Cabello, R.L. Reis, F. Sagués, L. Botto, R. Bitton, H.S. Azevedo, and A. Mata: Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein–peptide system. Nat. Chem. 7, 897 (2015).

    Article  CAS  Google Scholar 

  40. H. Wang, A. Paul, D. Nguyen, A. Enejder, and S.C. Heilshorn: Tunable control of hydrogel microstructure by kinetic competition between selfassembly and crosslinking of elastin-like proteins. ACS Appl. Mater. Interfaces 10, 21808–21815 (2018).

    Article  CAS  Google Scholar 

  41. F.G. Quiroz and A. Chilkoti: Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164 (2015).

    Article  CAS  Google Scholar 

  42. N.K. Li, S. Roberts, F.G. Quiroz, A. Chilkoti, and Y.G. Yingling: Sequence directionality dramatically affects LCST behavior of elastin-like polypeptides. Biomacromolecules 19, 2496–2505 (2018).

    Article  CAS  Google Scholar 

  43. M.D. Shoulders and R.T. Raines: Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009).

    Article  CAS  Google Scholar 

  44. K. Gelse, E. Pöschl, and T. Aigner: Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546 (2003).

    Article  CAS  Google Scholar 

  45. A.V. Persikov, J.A.M. Ramshaw, and B. Brodsky: Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 280, 19343–19349 (2005).

    Article  CAS  Google Scholar 

  46. S. Lukomski, K. Nakashima, I. Abdi, V.J. Cipriano, R.M. Ireland, S.D. Reid, G.G. Adams, and J.M. Musser: Identification and characterization of the scl gene encoding a group a streptococcus extracellular protein virulence factor with similarity to human collagen. Infect. Immun. 68, 6542–6553 (2000).

    Article  CAS  Google Scholar 

  47. Z. Yu, B. An, J.A.M. Ramshaw, and B. Brodsky: Bacterial collagen-like proteins that form triple-helical structures. J. Struct. Biol. 186, 451–461 (2014).

    Article  CAS  Google Scholar 

  48. E. Cosgriff-Hernandez, M.S. Hahn, B. Russell, T. Wilems, D. Munoz-Pinto, M.B. Browning, J. Rivera, and M. Höök: Bioactive hydrogels based on designer collagens. Acta Biomater. 6, 3969–3977 (2010).

    Article  CAS  Google Scholar 

  49. M.M. Barnhart and M.R. Chapman: Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006).

    Article  CAS  Google Scholar 

  50. S.K. Collinson, L. Emödy, K.H. Müller, T.J. Trust, and W.W. Kay: Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J. Bacteriol. 173, 4773–4781 (1991).

    Article  CAS  Google Scholar 

  51. P.Q. Nguyen, Z. Botyanszki, P.K.R. Tay, and N.S. Joshi: Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 5, 4945 (2014).

    Article  CAS  Google Scholar 

  52. N.-M. Dorval Courchesne, A. Duraj-Thatte, P.K.R. Tay, P.Q. Nguyen, and N.S. Joshi: Scalable production of genetically engineered nanofibrous macroscopic materials via Filtration. ACS Biomater. Sci. Eng. 3, 733–741 (2017).

    Article  Google Scholar 

  53. P.K.R. Tay, P.Q. Nguyen, and N.S. Joshi: A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. ACS Synth. Biol. 6, 1841 (2017).

    Article  Google Scholar 

  54. A.M. Duraj-Thatte, P. Praveschotinunt, T.R. Nash, F.R. Ward, and N.S. Joshi: Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins. Sci. Rep. 8, 3475 (2018).

    Article  Google Scholar 

  55. G. Zeng, B.S. Vad, M.S. Dueholm, G. Christiansen, M. Nilsson, T. Tolker-Nielsen, P.H. Nielsen, R.L. Meyer, and D.E. Otzen: Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Front. Microbiol. 6, 1099 (2015).

    Article  Google Scholar 

  56. E. Axpe, A. Duraj-Thatte, Y. Chang, D.-M. Kaimaki, A. Sanchez-Sanchez, H.B. Caliskan, N.-M. Dorval Courchesne, and N.S. Joshi: Fabrication of amyloid curli fibers–alginate nanocomposite hydrogels with enhanced stiffness. ACS Biomater. Sci. Eng. 4, 2100–2105 (2018).

    Article  CAS  Google Scholar 

  57. M.S. Dueholm, M. Albertsen, D. Otzen, and P.H. Nielsen: Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS ONE 7, e51274 (2012).

    Article  CAS  Google Scholar 

  58. N.P. King, J.B. Bale, W. Sheffler, D.E. McNamara, S. Gonen, T. Gonen, T. O. Yeates, and D. Baker: Accurate design of co-assembling multicomponent protein nanomaterials. Nature 510, 103–108 (2014).

    Article  CAS  Google Scholar 

  59. A. Leaver-Fay, M. Tyka, S.M. Lewis, O.F. Lange, J. Thompson, R. Jacak, K. Kaufman, P.D. Renfrew, C.A. Smith, W. Sheffler, I.W. Davis, S. Cooper, A. Treuille, D.J. Mandell, F. Richter, Y.-E. A. Ban, S.J. Fleishman, J.E. Corn, D.E. Kim, S. Lyskov, M. Berrondo, S. Mentzer, Z. Popović, J.J. Havranek, J. Karanicolas, R. Das, J. Meiler, T. Kortemme, J.J. Gray, B. Kuhlman, D. Baker, and P. Bradley: Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).

    Article  CAS  Google Scholar 

  60. H. Shen, J.A. Fallas, E. Lynch, W. Sheffler, B. Parry, N. Jannetty, J. Decarreau, M. Wagenbach, J.J. Vicente, J. Chen, L. Wang, Q. Dowling, G. Oberdorfer, L. Stewart, L. Wordeman, J.D. Yoreo, C. Jacobs-Wagner, J. Kollman, and D. Baker: De novo design of selfassembling helical protein filaments. Science 362, 705–709 (2018).

    Article  CAS  Google Scholar 

  61. A.S. Cristie-David, A. Sciore, S. Badieyan, J.D. Escheweiler, P. Koldewey, J.C.A. Bardwell, B.T. Ruotolo, and E.N.G. Marsh: Evaluation of de novodesigned coiled coils as off-the-shelf components for protein assembly. Mol. Syst. Des. Eng. 2, 140–148 (2017).

    Article  CAS  Google Scholar 

  62. J.M. Fletcher, R.L. Harniman, F.R.H. Barnes, A.L. Boyle, A. Collins, J. Mantell, T.H. Sharp, M. Antognozzi, P.J. Booth, N. Linden, M.J. Miles, R.B. Sessions, P. Verkade, and D.N. Woolfson: Self-assembling cages from coiled-coil peptide modules. Science 340, 595–599 (2013).

    Article  CAS  Google Scholar 

  63. F. Thomas, W.M. Dawson, E.J.M. Lang, A.J. Burton, G.J. Bartlett, G.G. Rhys, A.J. Mulholland, and D.N. Woolfson: De novo-designed α-helical barrels as receptors for small molecules. ACS Synth. Biol. 7, 1808 (2018).

    Article  CAS  Google Scholar 

  64. A. Ljubetič, F. Lapenta, H. Gradišar, I. Drobnak, J. Aupič, Ž. Strmšek, D. Lainšček, I. Hafner-Bratkovič, A. Majerle, N. Krivec, M. Benčina, T. Pisanski, T. Ć. Veličković, A. Round, J.M. Carazo, R. Melero, and R. Jerala: Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nat. Biotechnol. 35, 1094 (2017).

    Article  Google Scholar 

  65. O.S. Rabotyagova, P. Cebe, and D.L. Kaplan: Protein-based block copolymers. Biomacromolecules 12, 269–289 (2011).

    Article  CAS  Google Scholar 

  66. R. Valluzzi, S. Winkler, D. Wilson, and D.L. Kaplan: Silk: molecular organization and control of assembly. Philos. Trans. R. Soc. B: Biol. Sci. 357, 165–167 (2002).

    Article  CAS  Google Scholar 

  67. O.S. Rabotyagova, P. Cebe, and D.L. Kaplan: Self-assembly of genetically engineered spider silk block copolymers. Biomacromolecules 10, 229–236 (2009).

    Article  CAS  Google Scholar 

  68. M.C. Huber, A. Schreiber, P. von Olshausen, B.R. Varga, O. Kretz, B. Joch, S. Barnert, R. Schubert, S. Eimer, P. Kele, and S.M. Schiller: Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments. Nat. Mater. 14, 125 (2015).

    Article  CAS  Google Scholar 

  69. N. Dinjaski and D.L. Kaplan: Recombinant protein blends: silk beyond natural design. Curr. Opin. Biotechnol. 39, 1–7 (2016).

    Article  CAS  Google Scholar 

  70. A.Y. Chen, Z. Deng, A.N. Billings, U.O.S. Seker, M.Y. Lu, R.J. Citorik, B. Zakeri, and T.K. Lu: Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515–523 (2014).

    Article  CAS  Google Scholar 

  71. J.K. Polka, S.G. Hays, and P.A. Silver: Building spatial synthetic biology with compartments, scaffolds, and communities. Cold Spring Harb. Perspect. Biol. 8, a024018 (2016).

    Article  Google Scholar 

  72. H. Garcia-Seisdedos, C. Empereur-Mot, N. Elad, and E.D. Levy: Proteins evolve on the edge of supramolecular self-assembly. Nature 548, 244 (2017).

    Article  CAS  Google Scholar 

  73. Y. Suzuki, G. Cardone, D. Restrepo, P.D. Zavattieri, T.S. Baker, and F.A. Tezcan: Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 533, 369–373 (2016).

    Article  CAS  Google Scholar 

  74. B. Zakeri, J.O. Fierer, E. Celik, E.C. Chittock, U. Schwarz-Linek, V.T. Moy, and M. Howarth: Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl. Acad. Sci. USA 109, E690–E697 (2012).

    Article  CAS  Google Scholar 

  75. F. Sun, W.-B. Zhang, A. Mahdavi, F.H. Arnold, and D.A. Tirrell: Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proc. Natl. Acad. Sci. USA 111, 11269–11274 (2014).

    Article  CAS  Google Scholar 

  76. R.E. Cobb, R. Chao and H. Zhao: Directed evolution: past, present and future. AIChE J. Am. Inst. Chem. Eng. 59, 1432–1440 (2013).

    Article  CAS  Google Scholar 

  77. K.L. Tee and T.S. Wong: Polishing the craft of genetic diversity creation in directed evolution. Biotechnol. Adv. 31, 1707–1721 (2013).

    Article  CAS  Google Scholar 

  78. M.S. Packer and D.R. Liu: Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).

    Article  CAS  Google Scholar 

  79. F.H. Arnold: Design by directed evolution. Acc. Chem. Res. 31, 125–131 (1998).

    Article  CAS  Google Scholar 

  80. A. Currin, N. Swainston, P.J. Day, and D.B. Kell: Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 44, 1172–1239 (2015).

    Article  CAS  Google Scholar 

  81. W.P.C. Stemmer: Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).

    Article  CAS  Google Scholar 

  82. H. Zhao and F.H. Arnold: Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res. 25, 1307–1308 (1997).

    Article  CAS  Google Scholar 

  83. A. Crameri, S.-A. Raillard, E. Bermudez, and W.P.C. Stemmer: DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    Article  CAS  Google Scholar 

  84. C. Engler, R. Gruetzner, R. Kandzia, and S. Marillonnet: Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE 4, e5553 (2009).

    Article  Google Scholar 

  85. M. Ostermeier, J.H. Shim, and S.J. Benkovic: A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17, 1205 (1999).

    Article  CAS  Google Scholar 

  86. D. Bikard, S. Julié-Galau, G. Cambray, and D. Mazel: The synthetic integron: an in vivo genetic shuffling device. Nucleic Acids Res. 38, e153–e153 (2010).

    Article  Google Scholar 

  87. P.L. Foster: In vivo mutagenesis. Methods Enzymol. 204, 114–125 (1991).

    Article  CAS  Google Scholar 

  88. H.H. Wang, F.J. Isaacs, P.A. Carr, Z.Z. Sun, G. Xu, C.R. Forest, and G.M. Church: Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Article  CAS  Google Scholar 

  89. S.O. Halperin, C.J. Tou, E.B. Wong, C. Modavi, D.V. Schaffer, and J.E. Dueber: CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248 (2018).

    Article  CAS  Google Scholar 

  90. S. Lutz: Beyond directed evolution—semi-rational protein engineering and design. Curr. Opin. Biotechnol. 21, 734–743 (2010).

    Article  CAS  Google Scholar 

  91. P. Heinzelman, C.D. Snow, I. Wu, C. Nguyen, A. Villalobos, S. Govindarajan, J. Minshull, and F.H. Arnold: A family of thermostable fungal cellulases created by structure-guided recombination. Proc. Natl. Acad. Sci. USA 106, 5610–5615 (2009).

    Article  CAS  Google Scholar 

  92. P.A.G. Tizei, E. Csibra, L. Torres, and V.B. Pinheiro: Selection platforms for directed evolution in synthetic biology. Biochem. Soc. Trans. 44, 1165–1175 (2016).

    Article  CAS  Google Scholar 

  93. S. Raman, J.K. Rogers, N.D. Taylor, and G.M. Church: Evolution-guided optimization of biosynthetic pathways. Proc. Natl. Acad. Sci. USA 111, 17803–17808 (2014).

    Article  CAS  Google Scholar 

  94. J.-D. Pédelacq, S. Cabantous, T. Tran, T.C. Terwilliger, and G.S. Waldo: Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  Google Scholar 

  95. S.-A. Morgan, D.C. Nadler, R. Yokoo, and D.F. Savage: Biofuel metabolic engineering with biosensors. Curr. Opin. Chem. Biol. 35, 150–158 (2016).

    Article  CAS  Google Scholar 

  96. S.R.A. Devenish, M. Kaltenbach, M. Fischlechner, and F. Hollfelder: Droplets as Reaction Compartments for Protein Nanotechnology. In Protein Nanotechnology: Protocols, Instrumentation, and Applications, 2nd ed., edited by J A. Gerrard (Humana Press, 2013), pp. 269–286.

    Chapter  Google Scholar 

  97. K.T. O’Neil and R.H. Hoess: Phage display: protein engineering by directed evolution. Curr. Opin. Struct. Biol. 5, 443–449 (1995).

    Article  Google Scholar 

  98. A. Fernandez-Gacio, M. Uguen, and J. Fastrez: Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol. 21, 408–414 (2003).

    Article  CAS  Google Scholar 

  99. K.M. Esvelt, J.C. Carlson, and D.R. Liu: A system for the continuous directed evolution of biomolecules. Nature 472, 499 (2011).

    Article  CAS  Google Scholar 

  100. H. Leemhuis, V. Stein, A.D. Griffiths, and F. Hollfelder: New genotype–phenotype linkages for directed evolution of functional proteins. Curr. Opin. Struct. Biol. 15, 472–478 (2005).

    Article  CAS  Google Scholar 

  101. S. Kosuri, D.B. Goodman, G. Cambray, V.K. Mutalik, Y. Gao, A.P. Arkin, D. Endy, and G.M. Church: Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc. Natl. Acad. Sci. USA. 110, 14024 (2013).

    Article  CAS  Google Scholar 

  102. A. Zinchenko, S.R.A. Devenish, B. Kintses, P.-Y. Colin, M. Fischlechner, and F. Hollfelder: One in a million: flow cytometric sorting of single celllysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal. Chem. 86, 2526–2533 (2014).

    Article  CAS  Google Scholar 

  103. J.J. Agresti, E. Antipov, A.R. Abate, K. Ahn, A.C. Rowat, J.-C. Baret, M. Marquez, A.M. Klibanov, A.D. Griffiths, and D.A. Weitz: Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. USA 107, 4004–4009 (2010).

    Article  CAS  Google Scholar 

  104. P.-Y. Colin, B. Kintses, F. Gielen, C.M. Miton, G. Fischer, M.F. Mohamed, M. Hyvönen, D.P. Morgavi, D.B. Janssen, and F. Hollfelder: Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun. 6, 10008 (2015).

    Article  CAS  Google Scholar 

  105. F. Gielen, R. Hours, S. Emond, M. Fischlechner, U. Schell, and F. Hollfelder: Ultrahigh-throughput–directed enzyme evolution by absorbance-activated droplet sorting (AADS). Proc. Natl. Acad. Sci. USA 113, E7383–E7389 (2016).

    Article  CAS  Google Scholar 

  106. M. Girault, H. Kim, H. Arakawa, K. Matsuura, M. Odaka, A. Hattori, H. Terazono, and K. Yasuda: An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution. Sci. Rep. 7, 40072 (2017).

    Article  CAS  Google Scholar 

  107. H.-D. Xi, H. Zheng, W. Guo, A.M. Gañán-Calvo, Y. Ai, C.-W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, and S.H. Tan: Active droplet sorting in microfluidics: a review. Lab Chip 17, 751–771 (2017).

    Article  CAS  Google Scholar 

  108. S.S. Terekhov, I.V. Smirnov, A.V. Stepanova, T.V. Bobik, Y.A. Mokrushina, N.A. Ponomarenko, A.A. Belogurov, M.P. Rubtsova, O.V. Kartseva, M.O. Gomzikova, A.A. Moskovtsev, A.S. Bukatin, M.V. Dubina, E.S. Kostryukova, V.V. Babenko, M.T. Vakhitova, A.I. Manolov, M.V. Malakhova, M.A. Kornienko, A.V. Tyakht, A.A. Vanyushkina, E.N. Ilina, P. Masson, A.G. Gabibov, and S. Altman: Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proc. Natl. Acad. Sci. USA 114, 2550–2555 (2017).

    Article  CAS  Google Scholar 

  109. P.A. Romero and F.H. Arnold: Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10, 866–876 (2009).

    Article  CAS  Google Scholar 

  110. J.D. Bloom and F.H. Arnold: In the light of directed evolution: pathways of adaptive protein evolution. Proc. Natl. Acad. Sci. USA 106, 9995–10000 (2009).

    Article  CAS  Google Scholar 

  111. S. Kauffman and S. Levin: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987).

    Article  CAS  Google Scholar 

  112. J.G. Heddle, S. Chakraborti, and K. Iwasaki: Natural and artificial protein cages: design, structure and therapeutic applications. Curr. Opin. Struct. Biol. 43, 148–155 (2017).

    Article  CAS  Google Scholar 

  113. B. Wörsdörfer, K.J. Woycechowsky, and D. Hilvert: Directed evolution of a protein container. Science 331, 589–592 (2011).

    Article  Google Scholar 

  114. G.L. Butterfield, M.J. Lajoie, H.H. Gustafson, D.L. Sellers, U. Nattermann, D. Ellis, J.B. Bale, S. Ke, G.H. Lenz, A. Yehdego, R. Ravichandran, S.H. Pun, N.P. King, and D. Baker: Evolution of a designed protein assembly encapsulating its own RNA genome. Nature 552, 415–420 (2017).

    Article  CAS  Google Scholar 

  115. J.B. Bale, S. Gonen, Y. Liu, W. Sheffler, D. Ellis, C. Thomas, D. Cascio, T. O. Yeates, T. Gonen, N.P. King, and D. Baker: Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353, 389–394 (2016).

    Article  CAS  Google Scholar 

  116. N.C. Tang and A. Chilkoti: Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins. Nat. Mater. 15, 419 (2016).

    Article  CAS  Google Scholar 

  117. N.G. Bednarska, J. Schymkowitz, F. Rousseau, and J. Van Eldere: Protein aggregation in bacteria: the thin boundary between functionality and toxicity. Microbiology 159, 1795–1806 (2013).

    Article  CAS  Google Scholar 

  118. M.L. Evans, E. Chorell, J.D. Taylor, J. Åden, A. Götheson, F. Li, M. Koch, L. Sefer, S.J. Matthews, P. Wittung-Stafshede, F. Almqvist, and M.R. Chapman: The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol. Cell 57, 445–455 (2015).

    Article  CAS  Google Scholar 

  119. B. Kintses, C. Hein, M.F. Mohamed, M. Fischlechner, F. Courtois, C. Lainé, and F. Hollfelder: Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem. Biol. 19, 1001–1009 (2012).

    Article  CAS  Google Scholar 

  120. Cappello Joseph, Crissman John, Dorman Mary, Mikolajczak Marcia, Textor Garret, Marquet Magda, and Ferrari Franco: Genetic engineering of structural protein polymers. Biotechnol. Prog. 6, 198–202 (1990).

    Article  Google Scholar 

  121. M.C. Huber, A. Schreiber, W. Wild, K. Benz, and S.M. Schiller: Introducing a combinatorial DNA-toolbox platform constituting defined protein-based biohybrid-materials. Biomaterials 35, 8767–8779 (2014).

    Article  CAS  Google Scholar 

  122. E.M. Darling and D. Di Carlo: High-throughput assessment of cellular mechanical properties. Annu. Rev. Biomed. Eng. 17, 35–62 (2015).

    Article  CAS  Google Scholar 

  123. N. Nitta, T. Sugimura, A. Isozaki, H. Mikami, K. Hiraki, S. Sakuma, T. Iino, F. Arai, T. Endo, Y. Fujiwaki, H. Fukuzawa, M. Hase, T. Hayakawa, K. Hiramatsu, Y. Hoshino, M. Inaba, T. Ito, H. Karakawa, Y. Kasai, K. Koizumi, S. Lee, C. Lei, M. Li, T. Maeno, S. Matsusaka, D. Murakami, A. Nakagawa, Y. Oguchi, M. Oikawa, T. Ota, K. Shiba, H. Shintaku, Y. Shirasaki, K. Suga, Y. Suzuki, N. Suzuki, Y. Tanaka, H. Tezuka, C. Toyokawa, Y. Yalikun, M. Yamada, M. Yamagishi, T. Yamano, A. Yasumoto, Y. Yatomi, M. Yazawa, D. Di Carlo, Y. Hosokawa, S. Uemura, Y. Ozeki, and K. Goda: Intelligent image-activated cell sorting. Cell, 175, 266–276.e13 (2018).

    Article  CAS  Google Scholar 

  124. J.S. Dudani, D.R. Gossett, H.T.K. Tse, and D.D. Carlo: Pinched-flow hydrodynamic stretching of single-cells. Lab Chip 13, 3728–3734 (2013).

    Article  CAS  Google Scholar 

  125. M.Y. Hwang, S.G. Kim, H.S. Lee, and S.J. Muller: Elastic particle deformation in rectangular channel flow as a measure of particle stiffness. Soft Matter 14, 216 (2017). doi: 10.1039/C7SM01829K.

    Article  Google Scholar 

  126. P.-H. Wu, C.M. Hale, W.-C. Chen, J.S.H. Lee, Y. Tseng, and D. Wirtz: High-throughput ballistic injection nanorheology to measure cell mechanics. Nat. Protoc. 7, 155 (2012).

    Article  CAS  Google Scholar 

  127. T. Liu, X. Liu, D.R. Spring, X. Qian, J. Cui, and Z. Xu: Quantitatively mapping cellular viscosity with detailed organelle information via a designed PET fluorescent probe. Sci. Rep. 4, 5418 (2014).

    Article  CAS  Google Scholar 

  128. X. Ding, Z. Peng, S.-C. S. Lin, M. Geri, S. Li, P. Li, Y. Chen, M. Dao, S. Suresh, and T.J. Huang: Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl. Acad. Sci. USA 111, 12992–12997 (2014).

    Article  CAS  Google Scholar 

  129. M. Islam, H. Brink, S. Blanche, C. DiPrete, T. Bongiorno, N. Stone, A. Liu, A. Philip, G. Wang, W. Lam, A. Alexeev, E.K. Waller, and T. Sulchek: Microfluidic sorting of cells by viability based on differences in cell stiffness. Sci. Rep. 7, 1997 (2017).

    Article  Google Scholar 

  130. N.K. Gill, C. Ly, K.D. Nyberg, L. Lee, D. Qi, B. Tofig, M. Reis-Sobreiro, O. Dorigo, J. Rao, R. Wiedemeyer, B. Karlan, K. Lawrenson, M.R. Freeman, R. Damoiseaux, and A.C. Rowat: A scalable filtration method for high throughput screening based on cell deformability. Lab Chip 19, 343–357 (2019).

    Article  CAS  Google Scholar 

  131. M.D. Vahey and J. Voldman: High-throughput cell and particle characterization using ISO-dielectric separation. Anal. Chem. 81, 2446–2455 (2009).

    Article  CAS  Google Scholar 

  132. M.D. Vahey, L.Q. Pesudo, J.P. Svensson, L.D. Samson, and J. Voldman: Microfluidic genome-wide profiling of intrinsic electrical properties in Saccharomyces cerevisiae. Lab Chip 13, 2754–2763 (2013).

    Article  CAS  Google Scholar 

  133. A. Tay, C. Murray, and D. Di Carlo: Phenotypic selection of Magnetospirillum magneticum (AMB-1) overproducers using magnetic ratcheting. Adv. Funct. Mater. 27, 1703106 (2017).

    Article  Google Scholar 

  134. H.B. Fraser, A.E. Hirsh, L.M. Steinmetz, C. Scharfe, and M.W. Feldman: Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).

    Article  CAS  Google Scholar 

  135. D.A. Drummond, J.D. Bloom, C. Adami, C.O. Wilke, and F.H. Arnold: Why highly expressed proteins evolve slowly. Proc. Natl. Acad. Sci. USA 102, 14338–14343 (2005).

    Article  CAS  Google Scholar 

  136. P.Q. Nguyen. Synthetic biology engineering of biofilms as nanomaterials factories. Biochem. Soc. Trans. 45, 585–597 (2017).

    Article  CAS  Google Scholar 

  137. J. Shin and V. Noireaux: An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth. Biol. 1, 29–41 (2012).

    Article  CAS  Google Scholar 

  138. Y. Schaerli and F. Hollfelder: The potential of microfluidic water-in-oil droplets in experimental biology. Mol. Biosyst. 5, 1392–1404 (2009).

    Article  CAS  Google Scholar 

  139. A.J. Mach, J.H. Kim, A. Arshi, S.C. Hur, and D.D. Carlo: Automated cellular sample preparation using a centrifuge-on-a-chip. Lab Chip 11, 2827–2834 (2011).

    Article  CAS  Google Scholar 

  140. N. Cheney, R. MacCurdy, J. Clune, and H. Lipson: Unshackling Evolution: Evolving Soft Robots with Multiple Materials and a Powerful Generative Encoding. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (ACM, New York, NY, USA, 2013), pp. 167–174.

    Chapter  Google Scholar 

  141. G. Mackenzie, A.N. Boa, A. Diego-Taboada, S.L. Atkin, and T. Sathyapalan: Sporopollenin, The least known yet toughest natural biopolymer. Front. Mater. 2, 66 (2015).

    Article  Google Scholar 

  142. M. Nokelainen, H. Tu, A. Vuorela, H. Notbohm, K.I. Kivirikko, and J. Myllyharju: High-level production of human type I collagen in the yeast Pichia pastoris. Yeast 18, 797–806 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF Grant 1410751 (Division of Materials Research), the National Institutes of Health (1R01DK11077001A1), and the Wyss Institute for Biologically Inspired Engineering. The authors would also like to thank the reviewers for their time and insightful contributions to the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neel S. Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, A., Joshi, N.S. Towards the directed evolution of protein materials. MRS Communications 9, 441–455 (2019). https://doi.org/10.1557/mrc.2019.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.28

Navigation