Skip to main content
Log in

Incorporation of graphene quantum dots to enhance photocatalytic properties of anatase TiO2

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Different sized graphene quantum dots (GQDs) have been synthesized by an inexpensive wet chemical method using bird charcoal as a precursor. Obtained GQDs found to have luminescence and visible light absorption. These GQDs are further coupled with titanium dioxide (TiO2) to form TiO2–GQDs nanocomposites. GQD nanostructures exhibit band gap tunability and have the potential to enhance the photoabsorption in TiO2. The hybrid combination of the nanomaterials decrease the recombination of charge carriers, increase charge carrier mobility, and improve the overall photoconversion efficiency. The composites exhibit higher photocatalytic activity and rate constants value than pure TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Table I

Similar content being viewed by others

References

  1. C. Song: Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 115, 2–32 (2006).

    Article  CAS  Google Scholar 

  2. F.H. Alharbi and S. Kais: Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew. Sustain. Energy Rev. 43, 1073–1089 (2015).

    Article  Google Scholar 

  3. J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A. Briseno, and P. Yang: TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent. Sci. 2, 80–88 (2016).

    Article  CAS  Google Scholar 

  4. Q. Guo, C. Zhou, Z. Ma, Z. Ren, H. Fan, and X. Yang: Elementary photocatalytic chemistry on TiO2 surfaces. Chem. Soc. Rev. 45, 3701–3730 (2016).

    Article  CAS  Google Scholar 

  5. L. Yang, D. Yin, Y. Shen, M. Yang, X. Li, X. Han, X. Jiang, and B. Zhao: Mesoporous semiconducting TiO2 with rich active sites as a remarkable substrate for surface-enhanced Raman scattering. Phys. Chem. Chem. Phys. 19, 18731–18738 (2017).

    Article  CAS  Google Scholar 

  6. F. Mendizabal, R. Mera-Adasme, W.-H. Xu, and D. Sundholm: Electronic and optical properties of metalloporphyrins of zinc on TiO2 cluster in dyesensitized solar-cells (DSSC). A quantum chemistry study. RSC Adv. 7, 742677–742684 (2017).

    Article  Google Scholar 

  7. T. Jiang, L. Zhang, M. Ji, Q. Wang, Q. Zhao, X. Fu, and H. Yin: Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye. Particuology 11, 737–742 (2013).

    Article  CAS  Google Scholar 

  8. D. Zhang, F. Xie, P. Lin, and W.C.H. Choy: Al-TiO2 composite-modified single-layer graphene as an efficient transparent cathode for organic solar cells. ACS Nano 7, 1740–1747 (2013).

    Article  CAS  Google Scholar 

  9. J. Suave, S.M. Amorim, J. Ângelo, L. Andrade, A. Mendes, and R.F.P. M. Moreira: TiO2/reduced graphene oxide composites for photocatalytic degradation in aqueous and gaseous medium. J. Photochem. Photobiol. Chem. 348, 326–336 (2017).

    Article  CAS  Google Scholar 

  10. H. Tian, K. Shen, X. Hu, L. Qiao, and W. Zheng: N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity. J. Alloys Compd. 691, 369–377 (2017).

    Article  CAS  Google Scholar 

  11. D. Pan, J. Jiao, Z. Li, Y. Guo, C. Feng, Y. Liu, L. Wang, and M. Wu: Efficient separation of electron–hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain. Chem. Eng. 3, 2405–2413 (2015).

    CAS  Google Scholar 

  12. R. Long, D. Casanova, W-H Fang, and O.V. Prezhdo: Donor–acceptor interaction determines the mechanism of photoinduced electron injection from graphene quantum dots into TiO2: p-stacking supersedes covalent bonding. J. Am. Chem. Soc. 139, 2619–2629 (2017).

    Article  CAS  Google Scholar 

  13. K.J. Williams, C.A. Nelson, X. Yan, L.-S. Li, and X. Zhu: Hot electron injection from graphene quantumdots to TiO2. ACS Nano 7, 1388–1394 (2013).

    Article  CAS  Google Scholar 

  14. K.A.S. Fernando, S. Sahu, Y. Liu, W.K. Lewis, E.A. Guliants, A. Jafariyan, P. Wang, C. Bunker, and Y.P. Sun: Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 7, 8363–8376 (2015).

    Article  CAS  Google Scholar 

  15. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. Alemany, X. Zhan, G. Gao, S. Vithayathil, B. Kaipparettu, A. Marti, T. Hayashi, J. Zhu, and P. Ajayan: Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844–849 (2012).

    Article  CAS  Google Scholar 

  16. R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N. Cook, E. Samuel, C. Hwang, G. Ruan, G. Ceriotti, A. Rajji, A. Marti, and J. Tour: Coal as an abundant source of graphene quantum dots. Nat. Commun. 4, 2943 (2013). doi: 10.1038/ncomms3943.

    Article  Google Scholar 

  17. J.G. Lee, D.Y. Kim, J.J. Park, Y.H. Cha, J.Y. Yoon, H.S. Jeon, B.K. Min, M. T. Swihart, S. Jin, S. Deyab, and S. Yoon: Graphene–titania hybrid photoanodes by supersonic kinetic spraying for solar water splitting. J. Am. Ceram. Soc. 11, 3660–3668 (2014).

    Article  Google Scholar 

  18. N. Gobi, D. Vijaykumar, O. Keles, and F. Erogbogbo: Infusion of graphene quantum dots to create stronger, tougher, and brighter polymer composites. ACS Omega 2, 4356–4362 (2017).

    Article  CAS  Google Scholar 

  19. B. Yuan, X. Sun, J. Yan, Z. Xie, P. Chen, and S. Zhou: C96H30 tailored single-layer and single-crystalline graphene quantum dots. Phys. Chem. Chem. Phys. 18, 25002–25009 (2016).

    Article  CAS  Google Scholar 

  20. J.D. Xie, G.-W. Lai, and M.M. Huq: Hydrothermal route to graphene quantum dots: Effects of precursor and temperature. Diam. Relat. Mater. 79, 112–118 (2017).

    Article  CAS  Google Scholar 

  21. T. Fan, W. Zeng, W. Tang, C. Yuan, S. Tong, K. Cai, Y. Liu, W. Huang, Y. Min, and A. Epstein: Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Res. Lett. 10, 55 (2015). doi: 10.1186/s11671-015-0783-9.

    Article  Google Scholar 

  22. L. Lin, M. Ron, S. Lu, X. Song, Y. Zhong, J. Yan, Y. Wang, and X. Chen: A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale 7, 1872–1878 (2015).

    Article  CAS  Google Scholar 

  23. F. Zhang, F. Liu, C. Wang, X. Xin, J. Liu, S. Guo, and J. Zhang: Effect of lateral size of graphene quantum dots on their properties and application. ACS Appl. Mater. Interfaces 8, 2104–2110 (2016).

    Article  CAS  Google Scholar 

  24. K. Shen, X. Xue, X. Wang, X. Hu, H. Tian, and W. Zheng: One-step synthesis of band-tunable N, S co-doped commercial TiO2/graphene quantum dots composites with enhanced photocatalytic activity. RSC Adv. 7, 23319–23327 (2017).

    Article  CAS  Google Scholar 

  25. S. Kim, J.K. Seo, J.H. Park, Y. Song, Y.S. Meng, and N.J. Heller: White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation. Carbon 124, 479–485 (2017).

    Article  CAS  Google Scholar 

  26. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, and G. Chen: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 4738–4743 (2012).

    Article  CAS  Google Scholar 

  27. Z. Gan, H. Xu, and Y. Hao: Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8, 7794–7807 (2016).

    Article  CAS  Google Scholar 

  28. C.Y. Teng, B.S. Nguyen, T.F. Yeh, Y.L. Lee, S.J. Chen, and H. Teng: Roles of nitrogen functionalities in enhancing the excitation-independent greencolor photoluminescence of graphene oxide dots. Nanoscale 9, 8256–8265 (2017).

    Article  CAS  Google Scholar 

  29. G. Kumar, U. Thupakula, P. Kanti Sarkar, and S. Acharya: Easy extraction of water-soluble graphene quantum dots for light emitting diodes. RSC Adv. 5, 27711–27716 (2015).

    Article  CAS  Google Scholar 

  30. O. Ola, and M.M. Maroto-Valer: Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 24, 16–42 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is the result of the combined efforts and leadership of many valued individuals. We would like to thank Professor Ewelina Lucow’s for her guidance through the progression of this project. We also acknowledge support from San Jose State University’s Research, Service and Creative Activity Grant Awards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folarin Erogbogbo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnusamy, S., Kaur, R., Bokare, A. et al. Incorporation of graphene quantum dots to enhance photocatalytic properties of anatase TiO2. MRS Communications 8, 137–144 (2018). https://doi.org/10.1557/mrc.2018.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.7

Navigation