Skip to main content
Log in

3D models of the bone marrow in health and disease: yesterday, today, and tomorrow

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The complex interaction between hematopoietic stem cells (HSCs) and their microenvironment in the human bone marrow ensures a life-long blood production by balancing stem cell maintenance and differentiation. This so-called HSC niche can be disturbed by malignant diseases. Investigating their consequences on hematopoiesis requires a deep understanding of how the niches function in health and disease. To facilitate this, biomimetic models of the bone marrow are needed to analyze HSC maintenance and hematopoiesis under steady state and diseased conditions. Here, 3D bone marrow models, their fabrication methods (including 3D bioprinting), and implementations recapturing bone marrow functions in health and diseases are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Table 1
Figure 4

Similar content being viewed by others

References

  1. G.M. Crane, E. Jeffery, and S.J. Morrison: Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573 (2017).

    Article  CAS  Google Scholar 

  2. H. Yoshihara, F. Arai, K. Hosokawa, T. Hagiwara, K. Takubo, Y. Nakamura, Y. Gomei, H. Iwasaki, S. Matsuoka, K. Miyamoto, H. Miyazaki, T. Takahashi, and T. Suda: Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1, 685 (2007).

    Article  CAS  Google Scholar 

  3. L.M. Calvi, G.B. Adams, K.W. Weibrecht, J.M. Weber, D.P. Olson, M.C. Knight, R.P. Martin, E. Schipani, P. Divieti, F.R. Bringhurst, L.A. Milner, H.M. Kronenberg, and D.T. Scadden: Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841 (2003).

    Article  CAS  Google Scholar 

  4. Y. Kunisaki, I. Bruns, C. Scheiermann, J. Ahmed, S. Pinho, D. Zhang, T. Mizoguchi, Q. Wei, D. Lucas, K. Ito, J.C. Mar, A. Bergman, and P.S. Frenette: Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637 (2013).

    Article  CAS  Google Scholar 

  5. M. Acar, K.S. Kocherlakota, M.M. Murphy, J.G. Peyer, H. Oguro, C.N. Inra, C. Jaiyeola, Z. Zhao, K. Luby-Phelps, and S.J. Morrison: Deep imaging of bone marrow shows non-dividing stem cells are mainly peri-sinusoidal. Nature 526, 126 (2015).

    Article  CAS  Google Scholar 

  6. I.G. Winkler, V. Barbier, B. Nowlan, R.N. Jacobsen, C.E. Forristal, J.T. Pattern, J.L. Magnani, and J.P. Levesque: Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemore-sistance. Nat. Med. 18, 1651 (2012).

    Article  CAS  Google Scholar 

  7. M.J. Kiel, O.H. Yilmaz, T. Iwashita, O.H. Yilmaz, C. Terhorst, and S.J. Morrison: SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109 (2005).

    Article  CAS  Google Scholar 

  8. J. Fujisaki, J. Wu, A.L. Carlson, L. Silberstein, P. Putheti, R. Larocca, W. Gao, T.I. Saito, C. Lo Celso, H. Tsuyuzaki, T. Sato, D. Cote, M. Sykes, T.B. Strom, D.T. Scadden, and C.P. Lin: In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216 (2011).

    Article  CAS  Google Scholar 

  9. A. Chow, D. Lucas, A. Hidalgo, S. Mendez-Ferrer, D. Hashimoto, C. Scheiermann, M. Battista, M. Leboeuf, C. Prophete, N. van Rooijen, M. Tanaka, M. Merad, and P.S. Frenette: Bone marrow CD169 + macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261 (2011).

    Article  CAS  Google Scholar 

  10. F. Arai, K. Hosokawa, H. Toyama, Y. Matsumoto, and T. Suda: Role of N-cadherin in the regulation of hematopoietic stem cells in the bone marrow niche. Ann. N. Y. Acad. Sci. 1266, 72 (2012).

    Article  CAS  Google Scholar 

  11. M.A. Schroeder and J.F. DiPersio: Mobilization of hematopoietic stem and leukemia cells. J. Leukocyte Biol. 91, 47 (2012).

    Article  CAS  Google Scholar 

  12. G. Klein: The extracellular matrix of the hematopoietic microenvironment. Experientia 51, 914 (1995).

    Article  CAS  Google Scholar 

  13. S.K. Nilsson, M.E. Debatis, M.S. Dooner, J.A. Madri, P.J. Quesenberry, and P.S. Becker: Immunofluorescence characterization of key extracellular matrix proteins in murine bone marrow in situ. J. Histochem. Cytochem. 46, 371 (1998).

    Article  CAS  Google Scholar 

  14. K.D. Rodgers, J.D. San Antonio, and O. Jacenko: Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators. Dev. Dyn. 237, 2622 (2008).

    Article  CAS  Google Scholar 

  15. V. Goncharova, N. Serobyan, S. lizuka, I. Schraufstatter, A. de Ridder, T. Povaliy, V. Wacker, N. Itano, K. Kimata, L.A. Orlovskaja, Y. Yamaguchi, and S. Khaldoyanidi: Hyaluronan expressed by the hematopoietic microenvironment is required for bone marrow hematopoiesis. J. Biol. Chem. 287, 25419 (2012).

    Article  CAS  Google Scholar 

  16. L. Coulombel, I. Auffray, M.H. Gaugler, and M. Rosemblatt: Expression and function of integrins on hematopoietic progenitor cells. Acta Haematol. 97, 13 (1997).

    Article  CAS  Google Scholar 

  17. C. Lee-Thedieck and J.P. Spatz: Biophysical regulation of hematopoietic stem cells. Biomater. Sci. 2, 1548 (2014).

    Article  CAS  Google Scholar 

  18. M.R. Nelson and K. Roy: Bone-marrow mimicking biomaterial niches for studying hematopoietic stem and progenitor cells. J. Mater. Chem. 64, 3490 (2016).

    Article  Google Scholar 

  19. M.A. Walasek, R. van Os, and G. de Haan: Hematopoietic stem cell expansion: challenges and opportunities. Ann. N. Y. Acad. Sci. 1266, 138 (2012).

    Article  CAS  Google Scholar 

  20. H. Dombret and C. Gardin: An update of current treatments for adult acute myeloid leukemia. Blood 127, 53 (2016).

    Article  CAS  Google Scholar 

  21. C. Nombela-Arrieta and S. Isringhausen: The role of the bone marrow stromal compartment in the hematopoietic response to microbial infections. Front. Immunol. 7, 689 (2016).

    Google Scholar 

  22. A. Knight: Animal experiments scrutinised: systematic reviews demonstrate poor human clinical and toxicological utility. Altex 24, 320 (2007).

    Article  Google Scholar 

  23. E. Törnqvist, A. Annas, B. Granath, E. Jalkesten, I. Cotgreave, and M. Oberg: Strategic focus on 3R principles reveals major reductions in the use of animals in pharmaceutical toxicity testing. PLoS ONE 9, e101638 (2014).

    Article  CAS  Google Scholar 

  24. J.S. Choi, B.P. Mahadik, and B.A.C. Harley: Engineering the hematopoietic stem cell niche: frontiers in biomaterial science. Biotechnol. J. 10, 1529 (2015).

    Article  CAS  Google Scholar 

  25. S. Mendez-Ferrer, T.V. Michurina, F. Ferraro, A.R. Mazloom, B.D. Macarthur, S.A. Lira, D.T. Scadden, A. Ma’ayan, G.N. Enikolopov, and P.S. Frenette: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829 (2010).

    Article  CAS  Google Scholar 

  26. J. Kiernan, P. Damien, M. Monaghan, R. Shorr, L. Mclntyre, D. Fergusson, A. Tinmouth, and D. Allan: Clinical studies of ex vivo expansion to accelerate engraftment after umbilical cord blood transplantation: a systematic review. Transfus. Med. Rev. 31, 173 (2017).

    Article  Google Scholar 

  27. N. Pineault and A. Abu-Khader: Advances in umbilical cord blood stem cell expansion and clinical translation. Exp. Hematol. 43, 498 (2015).

    Article  Google Scholar 

  28. J. Brandrup, E.H. Immergut, and E.A. Grulke: Polymer Handbook, 4th ed. John Wiley and Sons: New York, 1999).

    Google Scholar 

  29. C.A. Muth, C. Steinl, G. Klein, and C. Lee-Thedieck: Regulation of hematopoietic stem cell behavior by the nanostructured presentation of extracellular matrix components. PLoS ONE 8, e54778 (2013).

    Article  CAS  Google Scholar 

  30. A.J. Engler, S. Sen, H.L. Sweeney, and D.E. Discher: Matrix elasticity directs stem cell lineage specification. Cell 126, 677 (2006).

    Article  CAS  Google Scholar 

  31. C. Lee-Thedieck and J.P. Spatz: Artificial niches: biomimetic materials for hematopoietic stem cell culture. Macromol. Rapid Commun. 33, 1432 (2012).

    Article  CAS  Google Scholar 

  32. S.S. Kumar, J.H. Hsiao, Q.D. Ling, I. Dulinska-Molak, G. Chen, Y. Chang, Y. Chang, Y.H. Chen, D.C. Chen, S.T. Hsu, and A. Higuchi: The combined influence of substrate elasticity and surface-grafted molecules on the ex vivo expansion of hematopoietic stem and progenitor cells. Biomaterials 34, 7632 (2013).

    Article  CAS  Google Scholar 

  33. C.C. Zhang and H.F. Lodish: Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood 105, 4314 (2005).

    Article  CAS  Google Scholar 

  34. Y. Zhou, H. Chen, H. Li, and Y. Wu: 3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskele-ton tension. J. Cell. Mol. Med. 21, 1073 (2017).

    Article  CAS  Google Scholar 

  35. L. Rodling, I. Schwedhelm, S. Kraus, K. Bieback, J. Hansmann, and C. Lee-Thedieck: 3D models of the hematopoietic stem cell niche under steady-state and active conditions. Sci. Rep. 7, 4625 (2017).

    Article  CAS  Google Scholar 

  36. M.M. Cook, K. Futrega, M. Osiecki, M. Kabiri, A. Rice, K. Atkinson, G. Brooke, and M. Doran: Micromarrows—three-dimensional coculture of hematopoietic stem cells and mesenchymal stromal cells. Tissue Eng. Part C 18, 319 (2012).

    Article  CAS  Google Scholar 

  37. E.C. Costa, D. de Melo-Diogo, A.F. Moreira, M.P. Carvalho, and I.J. Correia: Spheroids formation on non-adhesive surfaces by liquid overlay technique: considerations and practical approaches. Biotechnol. J. 13, 1–12 (2018).

    Google Scholar 

  38. F. Salamanna, D. Contartese, M. Maglio, and M. Fini: A systematic review on in vitro 3D bone metastases models: a new horizon to recapitulate the native clinical scenario? Oncotarget 7, 44803–44820 (2016).

    Article  Google Scholar 

  39. A.M. Sitarski, H. Fairfield, C. Falank, and M.R. Reagan: 3d tissue engineered in vitro models of cancer in bone. ACS. Biomater. Sci. Eng. 4, 324 (2018).

    Article  CAS  Google Scholar 

  40. J. Necas, L. Bartosikova, P. Brauner, and J. Kolar: Hyaluronic acid (hya-luronan): a review. Vet. Med. 53, 397 (2008).

    Article  CAS  Google Scholar 

  41. B.D. Fairbanks, S.P. Singh, C.N. Bowman, and K.S. Anseth: Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules 44, 2444 (2011).

    Article  CAS  Google Scholar 

  42. J. Zhang, A. Skardal, and G.D. Prestwich: Engineered extracellular matrices with cleavable crosslinkers for cell expansion and easy cell recovery. Biomaterials 29, 4521 (2008).

    Article  CAS  Google Scholar 

  43. P.M. Kharkar, K.L. Kiick, and A.M. Kloxin: Designing degradable hydro-gels for orthogonal control of cell microenvironments. Chem. Soc. Rev. 42, 7335 (2013).

    Article  CAS  Google Scholar 

  44. F.R. Cheng, T. Su, J. Cao, X.L. Luo, L. Li, Y. Pu, and B. He: Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an “on demand” drug release system. J. Mater. Chem. B 6, 2258 (2018).

    Article  CAS  Google Scholar 

  45. C.M. Madl, B.L. LeSavage, R.E. Dewi, C.B. Dinh, R.S. Stowers, M. Khariton, K.J. Lampe, D. Nguyen, O. Chaudhuri, A. Enejder, and S.C. Heilshorn: Maintenance of neural progenitor cell sternness in 3D hydrogels requires matrix remodelling. Nat. Mater. 16, 1233 (2017).

    Article  CAS  Google Scholar 

  46. T.M.A. Henderson, K. Ladewig, D.N. Haylock, K.M. McLean, and A. J. O’Connor: Cryogels for biomedical applications. J. Mater. Chem. B 1, 2682 (2013).

    Article  CAS  Google Scholar 

  47. A. Raic, L. Rodling, H. Kalbacher, and C. Lee-Thedieck: Biomimetic mac-roporous PEG hydrogels as 3D scaffolds forthe multiplication of human hematopoietic stem and progenitor cells. Biomaterials 35, 929 (2014).

    Article  CAS  Google Scholar 

  48. M.S. Ferreira, W. Jahnen-Dechent, N. Labude, M. Bovi, T. Hieronymus, M. Zenke, R.K. Schneider, and S. Neuss: Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials 33, 6987 (2012).

    Article  CAS  Google Scholar 

  49. S.S. Kotha, B.J. Hayes, K.T. Phong, M.A. Redd, K. Bomsztyk, A. Ramakrishnan, B. Torok-Storb, and Y. Zheng: Engineering a multicellular vascular niche to model hematopoietic cell trafficking. Stem Cell. Res. Ther. 9, 77 (2018).

    Article  CAS  Google Scholar 

  50. S. Sieh, A.A. Lubik, J.A. Clements, C.C. Nelson, and D.W. Hutmacher: Interactions between human osteoblasts and prostate cancer cells in a novel 3D in vitro model. Organogenesis 6, 181 (2010).

    Article  Google Scholar 

  51. A.B. Bello, H. Park, and S.H. Lee: Current approaches in biomaterial-based hematopoietic stem cell niches. Acta Biomater. 72, 1 (2018).

    Article  CAS  Google Scholar 

  52. Y.S. Torisawa, C.S. Spina, T. Mammoto, A. Mammoto, J.C. Weaver, T. Tat, J.J. Collins, and D.E. Ingber: Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat. Methods 11, 663 (2014).

    Article  CAS  Google Scholar 

  53. A. Reinisch, D.C. Hernandez, K. Schallmoser, and R. Majeti: Generation and use of a humanized bone-marrow-ossicle niche for hematopoietic xenotransplantation into mice. Nat. Protoc. 12, 2169 (2017).

    Article  CAS  Google Scholar 

  54. C. Riether, C.M. Schurch, and A.F. Ochsenbein: Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ. 22, 187 (2015).

    Article  CAS  Google Scholar 

  55. E. Stieglitz and M.L. Loh: Genetic predispositions to childhood leukemia. Ther. Adv. Hematol. 4, 270 (2013).

    Article  CAS  Google Scholar 

  56. T. Lapidot, C. Sirard, J. Vormoor, B. Murdoch, T. Hoang, J. Caceres-Cortes, M. Minden, B. Paterson, M.A. Caligiuri, and J.E. Dick: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645 (1994).

    Article  CAS  Google Scholar 

  57. A.K. Brenner, I. Nepstad, and O. Bruserud: Mesenchymal stem cells support survival and proliferation of primary human acute myeloid leukemia cells through heterogeneous molecular mechanisms. Front. Immunol. 8, 106 (2017).

    Article  CAS  Google Scholar 

  58. K. Schepers, E.M. Pietras, D. Reynaud, J. Flach, M. Binnewies, T. Garg, A.J. Wagers, E.C. Hsiao, and E. Passegue: Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13, 285 (2013).

    Article  CAS  Google Scholar 

  59. R. Jacamo, Y. Chen, Z. Wang, W. Ma, M. Zhang, E.L. Spaeth, Y. Wang, V.L. Battula, P.Y. Mak, K. Schallmoser, P. Ruvolo, W.D. Schober, E.J. Shpall, M.H. Nguyen, D. Strunk, C.E. Bueso-Ramos, S. Konoplev, R.E. Davis, M. Konopleva, and M. Andreeff: Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-kappaB mediates chemore-sistance. Blood 123, 2691 (2014).

    Article  CAS  Google Scholar 

  60. Y. Saito, N. Uchida, S. Tanaka, N. Suzuki, M. Tomizawa-Murasawa, A. Sone, Y. Najima, S. Takagi, Y. Aoki, A. Wake, S. Taniguchi, L.D. Shultz, and F. Ishikawa: Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat. Biotechnol. 28, 275 (2010).

    Article  CAS  Google Scholar 

  61. G.J. Cook, and T.S. Pardee: Animal models of leukemia: any closerto the real thing? Cancer Metastasis Rev. 32, 63 (2013).

    Article  Google Scholar 

  62. M. de Jong, and T. Maina: Of mice and humans: are they the same?-Implications in cancertranslational research. J. Nucl. Med. 51, 501 (2010).

    Article  Google Scholar 

  63. L. Demetrius: Of mice and men. EMBO Rep. 6, S39 (2005).

    Article  CAS  Google Scholar 

  64. F. Ishikawa, S. Yoshida, Y. Saito, A. Hijikata, H. Kitamura, S. Tanaka, R. Nakamura, T. Tanaka, H. Tomiyama, N. Saito, M. Fukata, T. Miyamoto, B. Lyons, K. Ohshima, N. Uchida, S. Taniguchi, O. Ohara, K. Akashi, M. Harada, and L.D. Shultz: Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol. 25, 1315 (2007).

    Article  CAS  Google Scholar 

  65. C.R. Cogle, D.C. Goldman, G.J. Madlambayan, R.P. Leon, A.A. Masri, H.A. Clark, S.A. Asbaghi, J.W. Tyner, J. Dunlap, G. Fan, T. Kovacsovics, Q. Liu, A. Meacham, K.L. Hamlin, R.A. Hromas, E.W. Scott, and W.H. Fleming: Functional Integration of Acute Myeloid Leukemia into the Vascular Niche. Leukemia 28, 1978 (2014).

    Article  Google Scholar 

  66. L.J. Bray, M. Binner, Y. Korner, M. von Bonin, M. Bornhauser, and C. Werner: A three-dimensional ex vivo tri-cultu re model mimics cell-cell interactions between acute myeloid leukemia and the vascular niche. Haematologica 102, 1215 (2017).

    Article  CAS  Google Scholar 

  67. A. Bruce, R. Evans, R. Mezan, L. Shi, B.S. Moses, K.H. Martin, L.F. Gibson, and Y. Yang: Three-dimensional microfluidic tri-culture model of the bone marrow microenvironment for study of acute lymphoblastic leukemia. PLoS ONE 10, e0140506 (2015).

    Article  CAS  Google Scholar 

  68. V. Trimarco, E. Ave, M. Facco, G. Chiodin, F. Frezzato, V. Martini, C. Gattazzo, F. Lessi, C.A. Giorgi, A. Visentin, M. Castelli, F. Severin, R. Zambello, F. Piazza, G. Semenzato, and L. Trentin: Cross-talk between chronic lymphocytic leukemia (CLL) tumor B cells and mesenchymal stromal cells (MSCs): implications for neoplastic cell survival. Oncotarget 6, 42130 (2015).

    Article  Google Scholar 

  69. S. Tavor, I. Petit, S. Porozov, A. Avigdor, A. Dar, L. Leider-Trejo, N. Shemtov, V. Deutsch, E. Naparstek, A. Nagler, and T. Lapidot: CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 64, 2817 (2004).

    Article  CAS  Google Scholar 

  70. S.C. Mills, P.H. Goh, J. Kudatsih, S. Ncube, R. Gurung, W. Maxwell, and A. Mueller: Cell migration towards CXCL12 in leukemic cells compared to breast cancer cells. Cell. Signal. 28, 316 (2016).

    Article  CAS  Google Scholar 

  71. B.-S. Cho, H.-J. Kim, and M. Konopleva: Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside. Korean J. Intern. Med. 32, 248 (2017).

    Article  CAS  Google Scholar 

  72. A. Liou, C. Delgado-Martin, D.T. Teachey, and M.L. Hermiston: The CXCR4/CXCL12 axis mediates chemotaxis, survival, and chemoresist-ance in t-cell acute lymphoblastic leukemia. Stood 124, 3629 (2014).

    Google Scholar 

  73. E. Weisberg, A.K. Azab, P.W. Manley, A.L. Kung, A.L. Christie, R. Branson, I.M. Ghobrial, and J.D. Griffin: Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib: potentiation of nilotinib by CXCR4 antagonist. Leukemia 26, 985 (2012).

    Article  CAS  Google Scholar 

  74. E.L. Weisberg, M. Sattler, A.K. Azab, D. Eulberg, A. Kruschinski, P.W. Manley, R. Stone, and J.D. Griffin: Inhibition of SDF-1-induced migration of oncogene-driven myeloid leukemia by the L-RNA aptamer (Spiegelmer), N0X-A12, and potentiation of tyrosine kinase inhibition. Oncotarget 8, 109973 (2017).

    Article  Google Scholar 

  75. Z.H. Shen, D.F. Zeng, X.Y. Wang, Y.Y. Ma, X. Zhang, and P.Y. Kong: Targeting of the leukemia microenvironment by c(RGDfV) overcomes the resistance to chemotherapy in acute myeloid leukemia in biomimetic polystyrene scaffolds. Oncol. Lett. 12, 3278 (2016).

    Article  CAS  Google Scholar 

  76. T.M. Blanco, A. Mantalaris, A. Bismarck, and N. Panoskaltsis: The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia. Biomaterials 31, 2243 (2010).

    Article  CAS  Google Scholar 

  77. A.J. Favreau, C.P.H. Vary, P.C. Brooks, and P. Sathyanarayana: Cryptic collagen IV promotes cell migration and adhesion in myeloid leukemia. Cancer Med. 3, 265 (2014).

    Article  CAS  Google Scholar 

  78. J.W. Shin and D.J. Mooney: Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leuke-mias. Proc. Natl. Acad. Sci. USA 113, 12126 (2016).

    Article  CAS  Google Scholar 

  79. T.T. Vu, C. Urn, and M. Lim: Characterization of leukemic cell behaviors in a soft marrow mimetic alginate hydrogel. J. Biomed. Mater. Res. B Appl. Biomater 100, 1980 (2012).

    Article  CAS  Google Scholar 

  80. G.P. Gupta and J. Massagué: Cancer metastasis: building a framework. Cell 127, 679 (2006).

    Article  CAS  Google Scholar 

  81. I.J. Fidler: The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev. Cancer 3, 453 (2003).

    Article  CAS  Google Scholar 

  82. F. Macedo, K. Ladeira, F. Pinho, N. Saraiva, N. Bonito, L. Pinto, and F. Goncalves: Bone metastases: an overview. Oncol. Rev. 11, 321 (2017).

    Google Scholar 

  83. J. Massagué and A.C. Obenauf: Metastatic colonization by circulating tumour cells. Nature 529, 298 (2016).

    Article  CAS  Google Scholar 

  84. C. Peitzsch, A. Tyutyunnykova, K. Pantel, and A. Dubrovska: Cancerstem cells: the root of tumor recurrence and metastases, Semin. Cancer Biol. 44, 10 (2017).

    Article  CAS  Google Scholar 

  85. A.C. Obenauf and J. Massagué: Surviving at a distance: organ-specific metastasis. Trends. Cancer. 1, 76 (2015).

    Article  Google Scholar 

  86. A. Chambers, A. Groom, and I. MacDonald: Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563a (2002).

    Article  CAS  Google Scholar 

  87. G.D. Roodman and R. Silbermann: Mechanisms of osteolytic and osteoblastic skeletal lesions. Bonekey. Rep. 4, 1 (2015).

    Google Scholar 

  88. A.M. Sitarski, H. Fairfield, C. Falank, and M.R. Reagan: 3D tissue engineered in vitro models of cancer in bone. ACS BAGS Biomater Sci. Eng. 4, 324 (2017).

    Article  CAS  Google Scholar 

  89. D.T. Butcher, T. Alliston, and V.M. Weaver: A tense situation: forcing tumour progression. Nat Rev. Cancer 9, 108 (2009).

    Article  CAS  Google Scholar 

  90. Y. Kang, P.M. Siegel, W. Shu, M. Drobnjak, S.M. Kakonen, C. Cordón-Cardo, T.A. Guise, and J. Massagué: A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537 (2003).

    Article  CAS  Google Scholar 

  91. Y. Shiozawa, E.A. Pedersen, A.M. Havens, Y. Jung, A. Mishra, J. Joseph, J.K. Kim, L.R. Patel, C. Ying, A.M. Ziegler, M.J. Pienta, J. Song, J. Wang, R.D. Loberg, P.H. Krebsbach, K.J. Pienta, and R.S. Taichman: Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121, 1298 (2011).

    Article  CAS  Google Scholar 

  92. J. Insua-Rodrfguez, and T. Oskarsson: The extracellular matrix in breast cancer. Adv. Drug Del. Rev. 97, 41 (2016).

    Article  CAS  Google Scholar 

  93. S. Nath and G.R. Devi: Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol. Ther. 163, 94 (2016).

    Article  CAS  Google Scholar 

  94. X. Xu, M.C. Farach-Carson, and X. Jia: Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol. Adv. 32, 1256 (2014).

    Article  CAS  Google Scholar 

  95. T. Pan, E.L. Fong, M. Martinez, D.A. Harrington, S.-H. Lin, M. C. Farach-Carson, and R.L. Satcher: Three-dimensional (3D) culture of bone-derived human 786-0 renal cell carcinoma retains relevant clinical characteristics of bone metastases. Cancer Lett. 365, 89 (2015).

    Article  CAS  Google Scholar 

  96. H. Kwon, H.J. Kim, W.L. Rice, B. Subramanian, S.H. Park, I. Georgakoudi, and D.L. Kaplan: Development of an in vitro model to study the impact of BMP-2 on metastasis to bone. J. Tissue Eng. Regen. Med. 4, 590 (2010).

    Article  CAS  Google Scholar 

  97. R.F. Cox, A. Jenkinson, K. Pohl, F.J. O’Brien, and M.P. Morgan: Osteomimicry of mammary adenocarcinoma cells in vitro; increased expression of bone matrix proteins and proliferation within a 3D collagen environment. PLoS ONE 7, e41679 (2012).

    Article  CAS  Google Scholar 

  98. K.A. Fitzgerald, J. Guo, R.M. Raftery, I.M. Castano, C.M. Curtin, M. Gooding, R. Darcy, F.J. O’Brien, and C.M. O’Driscoll: Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. Int. J. Pharm. 511, 1058 (2016).

    Article  CAS  Google Scholar 

  99. R. Marlow and G. Dontu: Modeling the breast cancer bone metastatic niche in complex three-dimensional cocultures. In Mammary Stem Cells, Maria del Mar Vivanco, ed., Humana Press: New York, 2015; p. 213.

    Chapter  Google Scholar 

  100. R. Dhurjati, V. Krishnan, LA. Shuman, A.M. Mastro, and E.A. Vogler: Metastatic breast cancer cells colonize and degrade three-dimensional osteoblastic tissue in vitro. Clin. Exp. Metastasis 25, 741 (2008).

    Article  CAS  Google Scholar 

  101. V. Krishnan, E.A. Vogler, D.M. Sosnoski. and A.M. Mastro: In vitro mimics of bone remodeling and the vicious cycle of cancer in bone. J. Cell. Physiol. 229, 453 (2014).

    Article  CAS  Google Scholar 

  102. S. Bersini, J.S. Jeon, G. Dubini, C. Arrigoni, S. Chung, J.L. Charest, M. Moretti, and R.D. Kamm: A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35, 2454 (2014).

    Article  CAS  Google Scholar 

  103. T. Campbell, C. Williams, O. Ivanova, and B. Garrett: Could 3D printing change the world. Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington, DC (2011).

    Google Scholar 

  104. S. Patra and V. Young: A review of 3D printing techniques and the future in biofabrication of bioprinted tissue. Cell Biochem. Biophys. 74, 93 (2016).

    Article  CAS  Google Scholar 

  105. C. Arrigoni, M. Gilardi, S. Bersini, C. Candrian, and M. Moretti: Bioprinting and organ-on-chip applications towards personalized medicine for bone diseases. Stem Cell Rev. 13, 407 (2017).

    Article  CAS  Google Scholar 

  106. J.P. Temple, D.L. Hutton, B.P. Hung, P.Y. Huri, C.A. Cook, R. Kondragunta, X. Jia, and W.L. Grayson: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J. Biomed. Mater. Res. A 102, 4317 (2014).

    Google Scholar 

  107. H.N. Chia and B.M. Wu: Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9, 4 (2015).

    Article  CAS  Google Scholar 

  108. J. Groll, T. Boland, T. Blunk, J.A. Burdick, D.-W. Cho, P.D. Dalton, B. Derby, G. Forgacs, Q. Li, and V.A. Mironov: Biofabrication: reappraising the definition of an evolving field. Biofabrication. 8, 013001 (2016).

    Article  CAS  Google Scholar 

  109. G. Gao, A.F. Schilling, T. Yonezawa, J. Wang, G. Dai, and X. Cui: Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9, 1304 (2014).

    Article  CAS  Google Scholar 

  110. S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot: Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication. 3, 025001 (2011).

    Article  CAS  Google Scholar 

  111. C-H. Chang, C.-Y. Lin, F.-H. Liu, M.H.-C. Chen, C.-P. Lin, H.-N. Ho, and Y.-S. Liao: 3D printing bioceramic porous scaffolds with good mechanical property and cell affinity. PLoS CNE 10, e0143713 (2015).

    Google Scholar 

  112. S. Wiist, M.E. Godla, R. Müller, and S. Hofmann: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 10, 630 (2014).

    Article  CAS  Google Scholar 

  113. K.-S. Hwang, J.-W. Choi, J.-H. Kim, H.Y. Chung, S. Jin, J.-H. Shim, W.-S. Yun, C.-M. Jeong, and J.-B. Huh: Comparative efficacies of collagen-based 3D printed PCL/PLGA/β-TCP composite block bone grafts and biphasic calcium phosphate bone substitute for bone regeneration. Materials (Basel) 10, 421 (2017).

    Article  CAS  Google Scholar 

  114. R. Alluri, A. Jakus, S. Bougioukli, W. Pannell, O. Sugiyama, A. Tang, R. Shah, and J.R. Lieberman: 3D printed hyperelastic “bone” scaffolds and regional gene therapy: a novel approach to bone healing. J. Biomed. Mater. Res. A 106, 1104 (2018).

    Article  CAS  Google Scholar 

  115. W. Zhang, Q. Lian, D. Li, K. Wang, D. Hao, W. Bian, J. He, and Z. Jin: Cartilage repair and subchondral bone migration using 3D printing osteochondral composites: a one-year-period study in rabbit trochlea. BioMed Res. Int. 2014, 1 (2014).

    Google Scholar 

  116. W. Zhu, C. Xu, B.-P. Ma, Z.-B. Zheng, Y.-L Li, Q. Ma, G.-L. Wu, and X.-S. Weng: Three-dimensional printed scaffolds with gelatin and platelets enhance in vitro preosteoblast growth behavior and the sustained-release effect of growth factors. Chin. Med. J. 129, 2576 (2016).

    Article  CAS  Google Scholar 

  117. S.V. Murphy and A. Atala: 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773 (2014).

    Article  CAS  Google Scholar 

  118. S. Adepu, N. Dhiman, A. Laha, C.S. Sharma, S. Ramakrishna, and M. Khandelwal: Three-dimensional bioprinting for bone tissue regeneration. Curr. Opin. Biomed. Eng. 2, 22 (2017).

    Article  Google Scholar 

  119. W. Peng, D. Unutmaz, and I.T. Ozbolat: Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 34, 722 (2016).

    Article  CAS  Google Scholar 

  120. P.S. Gungor-Ozkerim, I. Inci, Y.S. Zhang, A. Khademhosseini, and M.R. Dokmeci: Bioinks for 3D bioprinting: an overview. Biomater. Sci 6, 915 (2018).

    Article  CAS  Google Scholar 

  121. H. Cui, W. Zhu, M. Nowicki, X. Zhou, A. Khademhosseini, and L.G. Zhang: Hierarchical fabrication of engineered vascularized bone biphasic constructs via dual 3D bioprinting: integrating regional bioac-tive factors into architectural design. Adv. Healthc. Mater. 5, 2174 (2016).

    Article  CAS  Google Scholar 

  122. M. Hospodiuk, M. Dey, D. Sosnoski, and I.T. Ozbolat: The bioink:acom-prehensive review on bioprintable materials. Biotechnol. Adv. 35, 217 (2017).

    Article  CAS  Google Scholar 

  123. T. Jungst, W. Smolan, K. Schacht, T. Scheibel, and J. Groll: Strategies and molecular design criteria for 3D printable hydrogels. Chem. Rev. 116, 1496 (2016).

    Article  CAS  Google Scholar 

  124. H.W. Kang, S.J. Lee, I.K. Ko, C. Kengla, J.J. Yoo, and A. Atala: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312 (2016).

    Article  CAS  Google Scholar 

  125. W. Liu, Y.S. Zhang, M.A. Heinrich, F. De Ferrari, H.I. Jang, S.M. Bakht, M.M. Alvarez, J. Yang, Y.-C. Li, G. Trujillo-de Santiago, A.K. Miri, K. Zhu, P. Khoshakhlagh, G. Prakash, H. Cheng, X. Guan, Z. Zhong, J. Ju, G.H. Zhu, X. Jin, S.R. Shin, M.R. Dokmeci, and A. Khademhosseini: Rapid continuous multimaterial extrusion bioprinting. Adv. Mater. 29, 1604630 (2017).

    Article  CAS  Google Scholar 

  126. X. Zhou, N.J. Castro, W. Zhu, H. Cui, M. Aliabouzar, K. Sarkar, and L.G. Zhang: Improved human bone marrow mesenchymal stem cell osteogenesis in 3D bioprinted tissue scaffolds with low intensity pulsed ultrasound stimulation. Sci. Rep. 6, 1 (2016).

    Article  CAS  Google Scholar 

  127. M.V. Braham, T. Ahlfeld, A.R. Akkineni, M.C. Minnema, W.J. Dhert, F.C. Oner, C. Robin, A. Lode, M. Gelinsky, and J. Alblas: Endosteal and perivascular subniches in a 3D bone marrow model for multiple myeloma. Tissue Eng. Part C. Methods 24, 300 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the publishers Elsevier, Taylor and Francis Ltd., BioMed Central, Springer Nature, John Wiley and Sons for the permission to reprint published data shown in Figs. 3(a)[47], 3 (b)[49], 3(c)[50], Figs. 4(a), 4(b)[124], 4(c)[121], 4(d), 4(e)[125]. This project has received funding from the European Research Council (ERC) under the European Union’ s Horizon 2020 research and innovation programme (grant agreement No 757490). C.L.-T. and A.R. acknowledge funding from the BMBFNanoMatFutur programme (FKZ 13N12968)andthepro-gramme BioInterfaces in Technology and Medicine (BIFTM) by the Helmholtz Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Lee-Thedieck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raic, A., Naolou, T., Mohra, A. et al. 3D models of the bone marrow in health and disease: yesterday, today, and tomorrow. MRS Communications 9, 37–52 (2019). https://doi.org/10.1557/mrc.2018.203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.203

Navigation