Skip to main content
Log in

Frontiers in strain-engineered multifunctional ferroic materials

MRS Communications Aims and scope Submit manuscript

Abstract

Multifunctional, complex oxides capable of exhibiting highly-coupled electrical, mechanical, thermal, and magnetic susceptibilities have been pursued to address a range of salient technological challenges. Today, efforts are focused on addressing the pressing needs of a range of applications and identifying, understanding, and controlling materials with the potential for enhanced or novel responses. In this prospective, we highlight important developments in theoretical and computational techniques, materials synthesis, and characterization techniques. We explore how these new approaches could revolutionize our ability to discover, probe, and engineer these materials and provide a context for new arenas where these materials might make an impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. D.G. Schlom, L.Q. Chen, C.J. Fennie, V. Gopalan, D.A. Muller, X. Pan, R. Ramesh, and R. Uecker: Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118 (2014).

    Article  CAS  Google Scholar 

  2. A.R. Damodaran, J.C. Agar, S. Pandya, Z.H. Chen, L.R. Dedon, R. Xu, B.A. Apgar, S. Saremi, and L.W. Martin: New modalities of strain-control of ferroelectric thin films. J. Phys. Contiens. Matter. 28, 263001 (2016).

    Article  CAS  Google Scholar 

  3. C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, and R. Vaish: Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7, 3836 (2014).

    Article  Google Scholar 

  4. J.F. Scott. Ferroelectric Memories (Springer, Germany, 2000, 1), p. 248.

    Google Scholar 

  5. A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, and N. Setter: Ferroelectric materials for microwave tunable applications. J. Electroceram. 11, 5 (2003).

    Article  CAS  Google Scholar 

  6. P. Murait and P. Murait: Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10, 136 (2000).

    Article  Google Scholar 

  7. J. Gantz and D. Reinsel: The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east. IDC Mew: IDC Anal. Fut. 2007, 1 (2012).

    Google Scholar 

  8. S.V. Kalinin, B.G. Sumpter, and R.K. Archibald: Big-deep-smart data in imaging for guiding materials design. Nat. Mater. 14, 973 (2015).

    Article  CAS  Google Scholar 

  9. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, and O. Levy: The high-throughput highway to computational materials design. Nat. Mater. 12, 191 (2013).

    Article  CAS  Google Scholar 

  10. B.G. Sumpter, C. Getino, and D.W. Noid: Theory and applications of neural computing in chemical science. Annu. Rev. Phys. Chem. 45, 439 (1994).

    Article  CAS  Google Scholar 

  11. B.G. Sumpter and D.W. Noid: On the design, analysis, and characterization of materials using computational neural networks. Annu. Rev. Mater. Sci. 26, 223 (1996).

    Article  CAS  Google Scholar 

  12. T. Lookman, F. Alexander, and K. Rajan. Information Science for Materials Discovery and Design (Springer Series in Materials Science, Springer, Switzerland, 2016, 225), p. 307.

    Google Scholar 

  13. T. Mueller, A.G. Kusne, and R. Ramprasad. Machine learning in materials science: recent progress and emerging applications. In Machine Learning in Materials Science, edited by A.L. Parrill and K.B. Lipkowitz (Reviews in Computational Chemistry, Wiley Online Library, Hoboken, NJ, 2016, 29), pp. 186–273.

    CAS  Google Scholar 

  14. A. Jain, G. Hautier, S.P. Ong, K. Persson: New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. J. Mater. Res. 31, 977 (2016).

    Article  CAS  Google Scholar 

  15. P. Balachandran and J. Rondinelli. Informatics-based approaches for accelerated discovery of functional materials. In Computational Approaches to Materials Design: Theoretical and Practical Aspects, edited by S. Dattaand J.P. Davim (IGI Global, New York, 2016, 1), pp. 192–223.

    Article  Google Scholar 

  16. J.M. Rondinelli, K.R. Poeppelmeier, and A. Zunger: Research update: towards designed functionalities in oxide-based electronic materials. APL Mater. 3, 080702 (2015).

    Article  CAS  Google Scholar 

  17. R. Resta and D. Vanderbilt. Theory of polarization: a modern approach. In Physics of Ferroelectrics: A Modern Perspective, edited by C.H. Ahn, K.M. Rabe, and J.M. Triscone (Springer-Verlag, Berlin, 2007), pp. 31–67.

    Chapter  Google Scholar 

  18. J.M. Liu, X. Wang, H.L.W. Chan, and C.L. Choy: Monte Carlo simulation of the dielectric susceptibility of Ginzburg-Landau mode relaxors. Phys. Rev. B 69, 094114 (2004).

    Article  CAS  Google Scholar 

  19. Y. Shin, V.R. Cooper, I. Grinberg, and A.M. Rappe: Development of a bond-valence molecular-dynamics model for complex oxides. Phys. Rev. B 71, 054104 (2005).

    Article  CAS  Google Scholar 

  20. M. Sepliarsky, A. Asthagiri, S.R. Phillpot, M.G. Stachiotti, and R. L. Migoni: Atomic-level simulation of ferroelectricity in oxide materials. Curr. Opin. Sol. State Mater. Sci. 9, 107 (2005).

    Article  CAS  Google Scholar 

  21. W. Zhong, D. Vanderbilt, and K.M. Rabe: First-principles theory of ferroelectric phase transitions for perovskites: the case of BaTiO3. Phys. Rev. B 52, 6301 (1995).

    Article  CAS  Google Scholar 

  22. L. Bellaiche, A. Garcia, and D. Vanderbilt: Finite-temperature properties of Pb(Zr1-xTix)O3 alloys from first principles. Phys. Rev. Lett. 84, 5427 (2000).

    Article  CAS  Google Scholar 

  23. L. Chen: Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91, 1835 (2008).

    Article  CAS  Google Scholar 

  24. Y.L. Li, S.Y. Hu, Z.K. Liu, and L.Q. Chen: Phase-field model of domain structures in ferroelectric thin films. Appl. Phys. Lett. 78, 3878 (2001).

    Article  CAS  Google Scholar 

  25. N. Pertsev, V. Kukhar, H. Kohlstedt, and R. Waser: Phase diagrams and physical properties of single-domain epitaxial Pb(Zr1-xTix)O3 thin films. Phys. Rev. B 67, 054107 (2003).

    Article  CAS  Google Scholar 

  26. V. Koukhar, N. Pertsev, and R. Waser: Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures. Phys. Rev. B 64, 214103 (2001).

    Article  CAS  Google Scholar 

  27. C. Ward: Materials Genome Initiative for Global Competitiveness. Executive Office of the President National Science and Technology Council, 2011. http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genomeJnitiative-final.pdf

    Google Scholar 

  28. G. Céder and K. Persson: The stuff of dreams. Sci. Am. 309, 36 (2013).

    Article  Google Scholar 

  29. M. Asta: Computational materials discovery and design. JOM J. Met. 66, 364 (2014).

    Article  Google Scholar 

  30. A. Jain, Y. Shin, and K.A. Persson: Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016).

    Article  CAS  Google Scholar 

  31. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton: Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65, 1501 (2013).

    Article  CAS  Google Scholar 

  32. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson: Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  CAS  Google Scholar 

  33. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L. J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy: AFL0WLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227 (2012).

    Article  CAS  Google Scholar 

  34. G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozinsky: ANDA: automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111, 218 (2016).

    Article  Google Scholar 

  35. The NoMaD Repository: http://nomad-repository.eu/cms/ (accessed June 17, 2016).

  36. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder: Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314 (2013).

    Article  CAS  Google Scholar 

  37. C.C. Fischer, K.J. Tibbetts, D. Morgan, and G. Ceder: Predicting crystal structure by merging data mining with quantum mechanics. Nat. Mater. 5, 641 (2006).

    Article  CAS  Google Scholar 

  38. M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C.K. Ande, S. van der Zwaag, and J.J. Plata: Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2, 150009 (2015).

    Article  CAS  Google Scholar 

  39. C. Toher, J.J. Plata, O. Levy, M. De Jong, M. Asta, M.B. Nardelli, and S. Curtarolo: High-throughput computational screening of thermal conductivity, Debye temperature, and Gruneisen parameter using a quasi-harmonic Debye model. Phys. Rev. 690, 174107 (2014).

    Article  CAS  Google Scholar 

  40. J. Yang, L. Xi, W. Qiu, L Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, and D.J. Singh: On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective. NPJ Comput. Mater. 2, 15015 (2016).

    Article  CAS  Google Scholar 

  41. M. de Jong, W. Chen, H. Geerlings, M. Asta, and K.A. Persson: A database to enable discovery and design of piezoelectric materials. Sci. Data 2, 150053 (2015).

    Article  CAS  Google Scholar 

  42. J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H. A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, and J.K. Norskov: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem. 1, 552 (2009).

    Article  CAS  Google Scholar 

  43. G.L.W. Hart, V. Blum, M.J. Walorski, and A. Zunger: Evolutionary approach for determining first-principles hamiltonians. Nat. Mater. 4, 391 (2005).

    Article  CAS  Google Scholar 

  44. K. Yang, W. Setyawan, S. Wang, M.B. Nardelli, and S. Curtarolo: A search model for topological insulators with high-throughput robustness descriptors. Nat Mater. 11, 614 (2012).

    Article  CAS  Google Scholar 

  45. X.D. Xiang: Combinatorial materials synthesis and screening: an integrated materials chip approach to discovery and optimization of functional materials. Annu. Rev. Mater. Sci. 29, 149 (1999).

    Article  CAS  Google Scholar 

  46. N.A. Benedekand C.J. Fennie: Why are there so few perovskite ferroelec-trics? J. Phys. Chem. C 117, 13339 (2013).

    Article  CAS  Google Scholar 

  47. R. Wang, H. Xu, B. Yang, Z. Luo, E. Sun, J. Zhao, L Zheng, Y. Dong, H. Zhou, Y. Ren, C. Gao, and W. Cao: Phase coexistence and domain configuration in Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy. Appl. Phys. Lett. 108, 152905 (2016).

    Article  CAS  Google Scholar 

  48. S. Jesse, P. Maksymovych, and S.V. Kalinin: Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics. Appl. Phys. Lett 93, 112903 (2008).

    Article  CAS  Google Scholar 

  49. S. Jesse, M. Chi, A. Belianinov, C. Beekman, S. Kalinin, A. Borisevich, and A. Lupini: Big data analytics for scanning transmission electron microscopy ptychography. Sci. Rep. 6, 26348 (2016).

    Article  CAS  Google Scholar 

  50. C.T. Nelson, P. Gao, J.R. Jokisaari, C. Heikes, C. Adamo, A. Melville, S. Baek, C.M. Folkman, B. Winchester, Y. Gu, Y. Liu, K. Zhang, E. Wang, J. Li, L. Chen, C. Eom, D.G. Schlom, and X. Pan: Domain dynamics during ferroelectric switching. Science 334, 968 (2011).

    Article  CAS  Google Scholar 

  51. V.B. Ozdol, C. Gammer, X.G. Jin, P. Ercius, C. Ophus, J. Ciston, and A.M. Minor: Strain mapping at nanometer resolution using advanced nano-beam electron diffraction. Appl. Phys. Lett. 106, 253107 (2015).

    Article  CAS  Google Scholar 

  52. A. Belianinov, R. Vasudevan, E. Strelcov, C. Steed, S.M. Yang, A. Tselev, S. Jesse, M. Biegalski, G. Shipman, and C. Symons: Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets. Adv. Struct. Chem. Imag. 1, 1 (2015).

    Article  Google Scholar 

  53. R.K. Vasudevan, S. Zhang, M.B. Okatan, S. Jesse, S.V. Kalinin, and N. Bassiri-Gharb: Multidimensional dynamic piezoresponse measurements: unraveling local relaxation behavior in relaxor-ferroelectrics via big data. J. Appl. Phys. 118, 072003 (2015).

    Article  CAS  Google Scholar 

  54. S. Somnath, A. Belianinov, S.V. Kalinin, and S. Jesse: Full information acquisition in piezoresponse force microscopy. Appl. Phys. Lett. 107, 263102 (2015).

    Article  CAS  Google Scholar 

  55. M.D. Biegalski, Y. Jia, D.G. Schlom, S. Trolier-McKinstry, S.K. Streiffer, V. Sherman, R. Uecker, and P. Reiche: Relaxorferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates. Appl. Phys. Lett. 88, 192907 (2006).

    Article  CAS  Google Scholar 

  56. J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X. Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, and D. G. Schlom: Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758 (2004).

    Article  CAS  Google Scholar 

  57. K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.Q. Chen, D.G. Schlom, and C.B. Eom: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005 (2004).

    Article  CAS  Google Scholar 

  58. J.H. Lee, L. Fang, E. Vlahos, X. Ke, Y.W. Jung, L.F. Kourkoutis, J. Kim, P.J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P.C. Hammel, K.M. Rabe, S. Kamba, J. Schubert, J.W. Freeland, D.A. Muller, C.J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D.G. Schlom: A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466, 954 (2010).

    Article  CAS  Google Scholar 

  59. L.W. Martin, Y.H. Chu, and R. Ramesh: Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R 68, 89 (2010).

    Article  CAS  Google Scholar 

  60. J.C. Agar, A.R. Damodaran, G.A. Velarde, S. Pandya, R.V.K. Mangalam, and L.W. Martin: Complex evolution of built-in potential in compositionally-graded PbZr1-xTixO3 thin films. ACS Nano 9, 7332 (2015).

    Article  CAS  Google Scholar 

  61. R.V.K. Mangalam, J.C. Agar, A.R. Damodaran, J. Karthik, and L. W. Martin: Improved pyroelectric figures of merit in compositionally graded PbZr1-xTixO3 thin films. ACS Appl. Mater. Interfaces 5, 13235 (2013).

    Article  CAS  Google Scholar 

  62. M.Y. El-Naggar, K. Dayal, D.G. Goodwin, and K. Bhattacharya: Graded ferroelectric capacitors with robust temperature characteristics. J. Appl. Phys. 100, 114115 (2006).

    Article  CAS  Google Scholar 

  63. M. Cole, E. Ngo, S. Hirsch, J. Demaree, S. Zhong, and S. Alpay: The fabrication and material properties of compositionally multilayered Ba1-xSrxTiO3 thin films for realization of temperature insensitive tunable phase shifter devices. J. Appl. Phys. 102, 034104 (2007).

    Article  CAS  Google Scholar 

  64. G. Catalan, L.J. Sinnamon, and J.M. Gregg: The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films. J. Phys. Condens. Matter. 16, 2253 (2004).

    Article  CAS  Google Scholar 

  65. L.E. Cross: Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53 (2006).

    Article  CAS  Google Scholar 

  66. K. Chu, B. Jang, J.H. Sung, Y.A. Shin, E. Lee, K. Song, J.H. Lee, C. Woo, S.J. Kim, S. Choi, T.Y. Koo, Y. Kim, S. Oh, M. Jo, and C. Yang: Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients. Nat Nanotechnol. 10, 972 (2015).

    Article  CAS  Google Scholar 

  67. M. Majdoub, P. Sharma, and T. Cagin: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008).

    Article  CAS  Google Scholar 

  68. U. Bhaskar, N. Banerjee, A. Abdollahi, E. Solanas, G. Rijnders, and G. Catalan: Flexoelectric MEMS: towards an electromechanical strain diode. Nanoscale 8, 1293 (2016).

    Article  CAS  Google Scholar 

  69. V.L. Indenbom, E.B. Loginov, and M.A. Osipov: Flexoelectric effect and crystal-structure. Kristallografiya 26, 1157 (1981).

    CAS  Google Scholar 

  70. D. Lee, B.C. Jeon, A. Yoon, Y.J. Shin, M.H. Lee, T.K. Song, S.D. Bu, M. Kim, J. Chung, J. Yoon, and T.W. Noh: Flexoelectric control of defect formation in ferroelectric epitaxial thin films. Adv. Mater. 26, 5005 (2014).

    Article  CAS  Google Scholar 

  71. G. Catalan, A. Lubk, A.H.G. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens, G. Rijnders, D.H.A. Blank, and B. Noheda: Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 10, 963 (2011).

    Article  CAS  Google Scholar 

  72. C. Jia, K.W. Urban, M. Alexe, D. Hesse, and I. Vrejoiu: Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr, Ti)O3. Science 331, 1420 (2011).

    Article  CAS  Google Scholar 

  73. J.C. Agar, A.R. Damodaran, M.B. Okatan, J. Kacher, C. Gammer, R. K. Vasudevan, S. Pandya, L.R. Dedon, R.V.K. Mangalam, G.A. Velarde, S. Jesse, N. Balke, A.M. Minor, S.V. Kalinin, and L.W. Martin: Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films. Nat. Mater. 15, 549 (2016).

    Article  CAS  Google Scholar 

  74. R.V.K. Mangalam, J. Karthik, A.R. Damodaran, J.C. Agar, and L. W. Martin: Unexpected crystal and domain structures and properties in compositionally graded PbZr1-xTixO3 thin films. Adv. Mater. 25, 1761 (2013).

    Article  CAS  Google Scholar 

  75. U.K. Bhaskar, N. Banerjee, A. Abdollahi, Z. Wang, D.G. Schlom, G. Rijnders, and G. Catalan: A flexoelectric microelectromechanical system on silicon. Nat Nanotechnol. 11, 263 (2015).

    Article  CAS  Google Scholar 

  76. K. Dorr: Ferroelastic domains: springy expansion. Nat. Mater. 15, 497 (2016).

    Article  CAS  Google Scholar 

  77. S.H. Baek, J. Park, D.M. Kim, V.A. Aksyuk, R.R. Das, S.D. Bu, D. A. Felker, J. Lettieri, V. Vaithyanathan, S.S.N. Bharadwaja, N. Bassiri-Gharb, Y.B. Chen, H.P. Sun, C.M. Folkman, H.W. Jang, D. J. Kreft, S.K. Streiffer, R. Ramesh, X.Q. Pan, S. Trolier-McKinstry, D. G. Schlom, M.S. Rzchowski, R.H. Blick, and C.B. Eom: Giant piezoelectricity on Si for hyperactive MEMS. Science 334, 958 (2011).

    Article  CAS  Google Scholar 

  78. A. Biancoli, C.M. Fancher, J.L. Jones, and D. Damjanovic: Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity. Nat. Mater. 14, 224 (2015).

    Article  CAS  Google Scholar 

  79. Y. Cao, Q. Li, L. Chen, and S.V. Kalinin: Coupling of electrical and mechanical switching in nanoscale ferroelectrics. Appl. Phys. Lett. 107, 202905 (2015).

    Article  CAS  Google Scholar 

  80. S. Farokhipoor, C. Magén, S. Venkatesan, J. fniguez, C.J.M. Daumont, D. Rubi, E. Snoeck, M. Mostovoy, C. De Graaf, A. Müller, M. Döblinger, C. Scheu, and B. Noheda: Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 515, 379 (2014).

    Article  CAS  Google Scholar 

  81. J. Seidel: Domain walls as nanoscale functional elements. J. Phys. Chem. Lett. 3, 2905 (2012).

    Article  CAS  Google Scholar 

  82. J. Seidel, R.K. Vasudevan, and N. Valanoor: Topological structures in multiferroics-domain walls, skyrmions and vortices. Adv. Energy Mater. 2, 1500292 (2016).

    Google Scholar 

  83. N. Choudhury, L. Walizer, S. Lisenkov, and L. Bellaiche: Geometric frustration in compositionally modulated ferroelectrics. Nature 470, 513 (2011).

    Article  CAS  Google Scholar 

  84. Y. Nahas, S. Prokhorenko, and L. Bellaiche: Frustration and self-ordering of topological defects in ferroelectrics. Phys. Rev. Lett. 116, 117603 (2016).

    Article  CAS  Google Scholar 

  85. J. Hong, G. Catalan, D.N. Fang, E. Artacho, and J.F. Scott: Topology of the polarization field in ferroelectric nanowires from first principles. Phys. Rev. B 81, 172101 (2010).

    Article  CAS  Google Scholar 

  86. Y. Nahas, S. Prokhorenko, L. Louis, Z. Gui, I. Kornev, and L. Bellaiche: Discovery of stable skyrmionic state in ferroelectric nanocomposites. Nat Commun. 6, 8542 (2015).

    Article  CAS  Google Scholar 

  87. S. Prosandeev, I. Ponomareva, I. Kornev, I. Naumov, and L. Bellaiche: Controlling toroidal moment by means of an inhomogeneous static field: an ab initio study. Phys. Rev. Lett. 96, 237601 (2006).

    Article  CAS  Google Scholar 

  88. S. Prosandeev, I. Ponomareva, I. Naumov, I. Kornev, and L. Bellaiche: Original properties of dipole vortices in zero-dimensional ferroelectrics. J. Phys. Condens. Matter. 20, 193201 (2008).

    Article  CAS  Google Scholar 

  89. I.I. Naumov, L. Bellaiche, and H. Fu: Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737 (2004).

    Article  CAS  Google Scholar 

  90. W.J. Chen, Y. Zheng, B. Wang, and J.Y. Liu: Coexistence of toroidal and polar domains in ferroelectric systems: a strategy for switching ferroelectric vortex. J. Appl. Phys. 115, 214106 (2014).

    Article  CAS  Google Scholar 

  91. Z. Gui, L. Wang, and L. Bellaiche: Electronic properties of electrical vortices in ferroelectric nanocomposites from large-scale ab initio computations. Nano Lett. 15, 3224 (2015).

    Article  CAS  Google Scholar 

  92. L. Baudry, A. Sene, L.A. Luk’yanchuk, L. Lahoche, and J.F. Scott: Polarization vortex domains induced by switching electric field in ferroelectric films with circular electrodes. Phys. Rev. B 90, 024102 (2014).

    Article  CAS  Google Scholar 

  93. A.K. Yadav, C.T. Nelson, S.L. Hsu, Z. Hong, J.D. Clarkson, C.M.C.M. Schlepüetz, A.R. Damodaran, P. Shafer, E. Arenholz, L.R. Dedon, D. Chen, A. Vishwanath, A.M. Minor, L.Q. Chen, J.F. Scott, L W. Martin, and R. Ramesh: Observation of polar vortices in oxide superlattices. Nature 530, 198 (2016).

    Article  CAS  Google Scholar 

  94. I. Naumov and H. Fu: Vortex-to-polarization phase transformation path in ferroelectric Pb(ZrTi)O3 nanoparticles. Phys. Rev. Lett. 98, 077603 (2007).

    Article  CAS  Google Scholar 

  95. J.T. Heron, J.L. Bosse, Q. He, Y. Gao, M. Trassin, L. Ye, J.D. Clarkson, C. Wang, J. Liu, S. Salahuddin, D.C. Ralph, D.G. Schlom, J. Iniguez, B. D. Huey, and R. Ramesh: Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370 (2014).

    Article  CAS  Google Scholar 

  96. Y. Yuan, Z. Xiao, B. Yang, and J. Huang: Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2, 6027 (2014).

    Article  CAS  Google Scholar 

  97. J. Seidel and L.M. Eng: Shedding light on nanoscale ferroelectrics. Curr Appl. Phys. 14, 1083 (2014).

    Article  Google Scholar 

  98. K.T. Butler, J.M. Frost, and A. Walsh: Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838 (2015).

    Article  CAS  Google Scholar 

  99. S.M. Young, F. Zheng, and A.M. Rappe: First-principles calculation of the bulk photovoltaic effect in bismuth ferrite. Phys. Rev. Lett. 109, 236601 (2012).

    Article  CAS  Google Scholar 

  100. A. Zenkevich, Y. Matveyev, K. Maksimova, R. Gaynutdinov, A. Tolstikhina, and V. Fridkin: Giant bulk photovoltaic effect in thin ferroelectric BaTiO3 films. Phys. Rev. B 90, 161409 (2014).

    Article  CAS  Google Scholar 

  101. S.M. Young and A.M. Rappe: First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012).

    Article  CAS  Google Scholar 

  102. S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.H. Chu, C.H. Yang, J.L. Musfeldt, D.G. Schlom, J.W. Ager, and R. Ramesh: Photovoltaic effects in BiFeO3. Appl. Phys. Lett. 95, 062909 (2009).

    Article  CAS  Google Scholar 

  103. T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, and S.W. Cheong: Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63 (2009).

    Article  CAS  Google Scholar 

  104. W. Ji, K. Yao, and Y.C. Liang: Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv. Mater. 22, 1763 (2010).

    Article  CAS  Google Scholar 

  105. S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.H. Yang, M.D. Rossell, P. Yu, Y.H. Chu, J.F. Scott, J.W. Ager, L.W. Martin, and R. Ramesh: Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143 (2010).

    Article  CAS  Google Scholar 

  106. J. Seidel, D. Fu, S.Y. Yang, E. Alarcón-Lladó, J. Wu, R. Ramesh, and J. W. Ager: Efficient photovoltaic current generation at ferroelectric domain walls. Phys. Rev. Lett. 107, 126805 (2011).

    Article  CAS  Google Scholar 

  107. F. Yan, G. Chen, L. Lu, and J.E. Spanier: Dynamics of photogenerated surface charge on BiFeO3 films. ACS Nano 6, 2353 (2012).

    Article  CAS  Google Scholar 

  108. A. Bhatnagar, A.R. Chaudhuri, Y.H. Kim, D. Hesse, and M. Alexe: Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4, 2835 (2013).

    Article  CAS  Google Scholar 

  109. I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E. M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, and A.M. Rappe: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509 (2013).

    Article  CAS  Google Scholar 

  110. J. Michaels: Commercial Buildings Energy Consumption Survey: Energy Usage Summary. 2012. https://www.eia.gov/consumption/commercial/reports/2012/energyusage/ (accessed May 25, 2016).

    Google Scholar 

  111. S.B. Lang: Pyroelectricity: from ancient curiosity to modern imaging tool. Phys. Today 58, 31 (2005).

    Article  CAS  Google Scholar 

  112. X. Moya, S. Kar-Narayan, and N.D. Mathur: Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439 (2014).

    Article  CAS  Google Scholar 

  113. A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, and N.D. Mathur: Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311, 1270 (2006).

    Article  CAS  Google Scholar 

  114. A.S. Mischenko, Q. Zhang, R.W. Whatmore, J.F. Scott, and N.D. Mathur: Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3-0.1 PbTiO3 near room temperature. Appl. Phys. Lett 89, 242912 (2006).

    Article  CAS  Google Scholar 

  115. H. Chen, T. Ren, X. Wu, Y. Yang, and L. Liu: Giant electrocaloric effect in lead-free thin film of strontium bismuth tantalite. Appl. Phys. Lett. 94, 182902 (2009).

    Article  CAS  Google Scholar 

  116. D. Guo, J. Gao, Y. Yu, S. Santhanam, G.K. Fedder, A.J.H. McGaughey, and S.C. Yao: Electrocaloric characterization of a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer by infrared imaging. Appl. Phys. Lett. 105, 031906 (2014).

    Article  CAS  Google Scholar 

  117. B. Bhatia, A.R. Damodaran, H. Cho, L.W. Martin, and W.P. King: High-frequency thermal-electrical cycles for pyroelectric energy conversion. J. Appl. Phys. 116, 194509 (2014).

    Article  CAS  Google Scholar 

  118. T. Tong, J. Karthik, R.V.K. Mangalam, L.W. Martin, and D.G. Cahill: Reduction of the electrocaloric entropy change of ferroelectric PbZr1-xTixO3 epitaxial layers due to an elastocaloric effect. Phys. Rev. B 90, 094116 (2014).

    Article  CAS  Google Scholar 

  119. T. Tong, J. Karthik, L.W. Martin, and D.G. Cahill: Secondary effects in wide frequency range measurements of the pyroelectric coefficient of Ba0.6Sr0.4TiO3 and PbZr0.2Ti0.8O3 epitaxial layers. Phys. Rev. B 90, 155423 (2014).

    Article  CAS  Google Scholar 

  120. F.L. Goupil, A. Berenov, A. Axelsson, M. Valant, and N.M. Alford: Direct and indirect electrocaloric measurements on 001-PbMg1/3Nb2/3O3-30PbTiO3 single crystals. J. Appl. Phys. 111, 124109 (2012).

    Article  CAS  Google Scholar 

  121. J. Karthik and L.W. Martin: Effect of domain walls on the electrocaloric properties of Pb(Zr1-x, Tix)O3 thin films. Appl. Phys. Lett. 99, 032904 (2011).

    Article  CAS  Google Scholar 

  122. S. Lisenkov, B.K. Mani, CM. Chang, J. Almand, and I. Ponomareva: Multicaloric effect in ferroelectric PbTiO3 from first principles. Phys. Rev. B 87, 224101 (2013).

    Article  CAS  Google Scholar 

  123. Y. Gong, D. Wang, Q. Cao, E. Liu, J. Liu, and Y. Du: Electric field control of the magnetocaloric effect. Adv. Mater. 27, 801 (2015).

    Article  CAS  Google Scholar 

  124. X. Moya, LE. Hueso, F. Maccherozzi, A.I. Tovstolytkin, D.I. Podyalovskii, C. Ducati, L.C. Phillips, M. Ghidini, O. Hovorka, A. Berger, M.E. Vickers, E. Defay, S.S. Dhesi, and N.D. Mathur: Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nat. Mater. 12, 52 (2013).

    Article  CAS  Google Scholar 

  125. Y. Liu, L.C. Phillips, R. Mattana, M. Bibes, A. Barthélémy, and B. Dkhil: Large reversible caloric effect in FeRh thin films via a dual-stimulus multicaloric cycle. Nat. Commun. 7, 11614 (2016).

    Article  CAS  Google Scholar 

  126. T. Castân, A. Planes, and A. Saxena: Thermodynamics of ferrotoroidic materials: toroidocaloric effect. Phys. Rev. B 85, 144429 (2012).

    Article  CAS  Google Scholar 

  127. G.E. Moore: Cramming more components onto integrated circuits. Electronics 38, 114 (1965).

    Google Scholar 

  128. J. Markoff: Smaller, Faster, Cheaper, Over: The Future of Computer Chips. New York Times Technology, BU1, 2015.

    Google Scholar 

  129. C. Mead: Neuromorphic electronic systems. Proc. IEEE 78, 1629 (1990).

    Article  Google Scholar 

  130. A.I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S.R. Bakaul, R. Ramesh, and S. Salahuddin: Negative capacitance in a ferroelectric capacitor. Nat. Mater. 14, 182 (2015).

    Article  CAS  Google Scholar 

  131. P. Zubko, J.C. Wojdet, M. Hadjimjchael, S. Fernandez-Pena, A. Sené, I. Luk’yanchuk, J. Triscone, and J. Íñiguez: Negative capacitance in mul-tidomain ferroelectric superlattices. Nature 000, 0000 (2016).

    Google Scholar 

  132. D.J. Dean. In International Nuclear Physics Conference 2010 (Computational Science and Innovation; IOP Publishing: Journal of Physics: Conf. Series, 2011, 312), p. 062001.

    Google Scholar 

  133. R. Landauer: Irreversibility and heat generation in the computing process. IBM J. Res. Dev 5, 183 (1961).

    Article  Google Scholar 

  134. Y. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S. Han, Q. He, N. Balke, C. Yang, D. Lee, W. Hu, Q. Zhan, P. Yang, A. Fraile-Rodrfguez, A. Scholl, S.X. Wang, and R. Ramesh: Electric-field control of local ferromagne-tism using a magnetoelectric multiferroic. Nat. Mater. 7, 478 (2008).

    Article  CAS  Google Scholar 

  135. D.M. Newns, B.G. Elmegreen, X.H. Liu, and G.J. Martyna: The piezoelec-tronic transistor: a nanoactuator-based post-CMOS digital switch with high speed and low power. MRS Bull. 37, 1071 (2012).

    Article  CAS  Google Scholar 

  136. P.M. Solomon, B.A. Bryce, M.A. Kuroda, R. Keech, S. Shetty, T.M. Shaw, M. Copel, L.W. Hung, A.G. Schrott, C. Armstrong, M.S. Gordon, K. B. Reuter, T.N. Theis, W. Haensch, S.M. Rossnagel, H. Miyazoe, B. G. Elmegreen, X.H. Liu, S. Trolier-McKinstry, G.J. Martyna, and D. M. Newns: Pathway to the piezoelectronic transduction logic device. Nano Lett. 15, 2391 (2015).

    Article  CAS  Google Scholar 

  137. E.Y. Tsymbal and H. Kohlstedt: Tunneling across a ferroelectric. Science 313, 181 (2006).

    Article  CAS  Google Scholar 

  138. E.Y. Tsymbal, A. Gruverman, V. Garcia, M. Bibes, and A. Barthélémy: Ferroelectric and multiferroic tunnel junctions. MRS Bull. 37, 138 (2012).

    Article  CAS  Google Scholar 

  139. E.Y. Tsymbal and A. Gruverman: Ferroelectric tunnel junctions: beyond the barrier. Nat. Mater. 12, 602 (2013).

    Article  CAS  Google Scholar 

  140. V. Garcia and M. Bibes: Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 5, 4289 (2014).

    Article  CAS  Google Scholar 

  141. A.I. Khan, D. Bhowmik, P. Yu, S.J. Kim, X. Pan, R. Ramesh, and S. Salahuddin: Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011).

    Article  CAS  Google Scholar 

  142. C. Baeumer, S.P. Rogers, R.J. Xu, L.W. Martin, and M. Shim: Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching. Nano Lett. 13, 1693 (2013).

    Article  CAS  Google Scholar 

  143. H. Lu, A. Lipatov, S. Ryu, D.J. Kim, H. Lee, M.Y. Zhuravlev, C.B. Eom, E. Y. Tsymbal, A. Sinitskii, and A. Gruverman: Ferroelectric tunnel junctions with graphene electrodes. Nat. Commun. 5, 5518 (2014).

    Article  CAS  Google Scholar 

  144. J.H. Hinnefeld, R. Xu, S. Rogers, S. Pandya, M. Shim, L.W. Martin, and N. Mason: Single gate p-n junctions in graphene-ferroelectric devices. Appl. Phys. Lett. 108, 203109 (2015).

    Article  CAS  Google Scholar 

  145. C. Baeumer, D. Saldana-Greco, J.M.P. Martirez, A.M. Rappe, M. Shim, and L.W. Martin: Ferroelectrically driven spatial carrier density modulation in graphene. Nat Commun. 6, 6136 (2015).

    Article  CAS  Google Scholar 

  146. R.O. Cherifi, V. Ivanovskaya, L.C. Phillips, A. Zobelli, I.C. Infante, E. Jacquet, V. Garcia, S. Fusil, P.R. Briddon, N. Guiblin, A. Mougin, A. A. Unal, F. Kronast, S. Valencia, B. Dkhil, A. Barthélémy, and M. Bibes: Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345 (2014).

    Article  CAS  Google Scholar 

  147. Z.Q. Liu, L. Li, Z. Gai, J.D. Clarkson, S.L. Hsu, A.T. Wong, L.S. Fan, M.W. Lin, C.M. Rouleau, T.Z. Ward, H.N. Lee, A.S. Sefat, H. M. Christen, and R. Ramesh: Full electroresistance modulation in a mixed-phase metallic alloy. Phys. Rev. Lett. 116, 097203 (2016).

    Article  CAS  Google Scholar 

  148. Y. Lee, Z.Q. Liu, J.T. Heron, J.D. Clarkson, J. Hong, C. Ko, M. D. Biegalski, U. Aschauer, S.L. Hsu, M.E. Nowakowski, J. Wu, H. M. Christen, S. Salahuddin, J.B. Bokor, N.A. Spaldin, D.G. Schlom, and R. Ramesh: Large resistivity modulation in mixed-phase metallic systems. Nat Commun. 6, 5959 (2015).

    Article  CAS  Google Scholar 

  149. L.C. Phillips, R.O. Cherifi, V. Ivanovskaya, A. Zobelli, I.C. Infante, E. Jacquet, N. Guiblin, A.A. Ācenal, F. Kronast, B. Dkhil, A. Barthélémy, M. Bibes, and S. Valencia: Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature. Sci. Rep. 5, 10026 (2015).

    Article  CAS  Google Scholar 

  150. X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R.J. Paull, J.D. Clarkson, J. Kudrnovsky, I. Turek, J. Kunes, D. Yi, J.H. Chu, C.T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh: Room-temperature antiferromagnetic memory resistor. Nat Mater. 13, 367 (2014).

    Article  CAS  Google Scholar 

  151. Z. Liu, M.D. Biegalski, S. Hsu, S. Shang, C. Marker, J. Liu, L. Li, L. Fan, T. L. Meyer, A.T. Wong, J.A. Nichols, D. Chen, L. You, Z. Chen, K. Wang, K. Wang, T.Z. Ward, Z. Gai, H.N. Lee, A.S. Sefat, V. Lauter, Z. Liu, and H. M. Christen: Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias. Adv. Mater. 28, 118 (2016).

    Article  CAS  Google Scholar 

  152. C.S. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Melngailis, E. Williams, and R. Ramesh: Scaling of ferroelectric properties in thin films. Appl. Phys. Lett. 75, 409 (1999).

    Article  CAS  Google Scholar 

  153. J. Karthik, A.R. Damodaran, and L.W. Martin: Epitaxial ferroelectric heterostructures fabricated by selective area epitaxy of SrRuO3 using an MgO mask. Adv. Mater. 24, 1610 (2012).

    Article  CAS  Google Scholar 

  154. X. Li: Metal assisted chemical etching for high aspect ratio nanostruc-tures: a review of characteristics and applications in photovoltaics. Curr. Opin. Sol. State Mater. Sci. 16, 71 (2012).

    Article  CAS  Google Scholar 

  155. A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, and M. Viale: Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. USA 107, 11865 (2010).

    Article  CAS  Google Scholar 

  156. J. Yan, K. Chaudhary, S.C. Bae, J.A. Lewis, and S. Granick: Colloidal ribbons and rings from Janus magnetic rods. Nat. Commun. 4, 1516 (2013).

    Article  CAS  Google Scholar 

  157. M. Mochizuki: Spin-wave modes and their intense excitation effects in skyrmion crystals. Phys. Rev. Lett. 108, 017601 (2012).

    Article  CAS  Google Scholar 

  158. C. Nisoli, R. Moessner, and P. Schiffer: Colloquium: artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473 (2013).

    Article  CAS  Google Scholar 

  159. E. Mengotti, L.J. Heyderman, A.F. Rodriguez, F. Nolting, R.V. Huegli, and H. Braun: Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nat. Phys. 7, 68 (2011).

    Article  CAS  Google Scholar 

  160. S. Ladak, D.E. Read, G.K. Perkins, L.F. Cohen, and W.R. Branford: Direct observation of magnetic monopole defects in an artificial spinice system. Nat Phys. 6, 359 (2010).

    Article  CAS  Google Scholar 

  161. Y. Ivry, D. Chu, J.F. Scott, and C. Durkan: Domains beyond the grain boundary. Adv. Fund Mater. 21, 1827 (2011).

    Article  CAS  Google Scholar 

  162. A. Gruverman, O. Auciello, and H. Tokumoto: Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu. Rev. Mater. Sci. 28, 101 (1998).

    Article  CAS  Google Scholar 

  163. R.K. Vasudevan, D. Marincel, S. Jesse, Y. Kim, A. Kumar, S.V. Kalinin, and S. Trolier-McKinstry: Polarization dynamics in ferroelectric capacitors: local perspective on emergent collective behavior and memory effects. Adv. Fund Mater. 23, 2490 (2013).

    Article  CAS  Google Scholar 

  164. S. Choudhury, Y.L. Li, C. Krill III, and L.Q. Chen: Effect of grain orientation and grain size on ferroelectric domain switching and evolution: phase field simulations. Acta Mater. 55, 1415 (2007).

    Article  CAS  Google Scholar 

  165. P. Bintachitt, S. Jesse, D. Damjanovic, Y. Han, I.M. Reaney, S. Trolier-McKinstry, and S.V. Kalinin: Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics. Proc. Nat. Acad. Sci. USA 107, 7219 (2010).

    Article  CAS  Google Scholar 

  166. P. Bintachitt, S. Trolier-McKinstry, K. Seal, S. Jesse, and S.V. Kalinin: Switching spectroscopy piezoresponse force microscopy of polycrystal- line capacitor structures. Appl. Phys. Lett. 94, 042906 (2009).

    Article  CAS  Google Scholar 

  167. Y. Ivry, J.F. Scott, E.K.H. Salje, and C. Durkan: Nucleation, growth, and control of ferroelectric-ferroelastic domains in thin polycrystalline films. Phys. Rev. B 86, 205428 (2012).

    Article  CAS  Google Scholar 

  168. R. Xu, J. Karthik, A.R. Damodaran, and L.W. Martin: Stationary domain wall contribution to enhanced ferroelectric susceptibility. Nat Commun. 5, 3120 (2014).

    Article  CAS  Google Scholar 

  169. R. Xu, S. Liu, I. Grinberg, J. Karthik, A.R. Damodaran, A.M. Rappe, and L.W. Martin: Ferroelectric polarization reversal via successive ferroelastic transitions. Nat. Mater. 14, 79 (2015).

    Article  CAS  Google Scholar 

  170. A. Schilling, R.M. Bowman, G. Catalan, J.F. Scott, and J.M. Gregg: Morphological control of polar orientation in single-crystal ferroelectric nanowires. Nano Lett. 7, 3787 (2007).

    Article  CAS  Google Scholar 

  171. E.R. Lewis, D. Petit, L. O’Brien, A. Fernandez-Pacheco, J. Sampaio, A. Jausovec, H.T. Zeng, D.E. Read, and R.P. Cowburn: Fast domain wall motion in magnetic comb structures. Nat. Mater. 9, 980 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The J. C. A., S. P., R. X., S. S., and L. W. M. acknowledge support from the Air Force Office of Scientific Research under grant FA9550-12-1-0471, the Army Research Office under grant W911NF-14-1-0104, the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the Department of Energy under grant No. DE-SC0012375, and the National Science Foundation under grants DMR-1451219, CMMI-1434147, and OISE-1545907. R. R. and L. W. M. acknowledge support from the Gordon and Betty Moore Foundation’s EPiQS Initiative, Grant GBMF5307. A. K. Y. and R. R. acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the Thermoelectrics Materials FWP. T.A. acknowledges support from a National Science Foundation Graduate Research Fellowship. M. A. acknowledges support fromthe Materials Project. R. R. also acknowledges was supported by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua C. Agar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agar, J.C., Pandya, S., Xu, R. et al. Frontiers in strain-engineered multifunctional ferroic materials. MRS Communications 6, 151–166 (2016). https://doi.org/10.1557/mrc.2016.29

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.29

Navigation