Skip to main content
Log in

Lithium oxide solution in chloride melts as a medium to prepare LiCoO2 nanoparticles

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The paper describes a new technique of molten salt synthesis (MSS) that is based on the direct oxidation of halide ions with molecular oxygen in thermally stable halide melts to prepare nanoparticles of complex oxides. Lithium cobaltate (LiCoO2) was chosen as a model compound for testing this method. Synthesis was achieved in LiCl–CoCl2 melts at 600 and 700 °C, respectively, under a dry-air atmosphere. Fourier transform infrared (FTIR) and Raman spectroscopies, x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to study the products obtained. The route suggested results in the formation of stoichiometric high-temperature (HT) LiCoO2 powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough: LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783 (1980).

    Article  CAS  Google Scholar 

  2. M.S. Whittingham: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).

    Article  CAS  Google Scholar 

  3. S.H. Choi, J.-W. Son, Y.S. Yoon, and J. Kim: Particle size effects on temperature-dependent performance of LiCoO2 in lithium batteries. J. Power Sources 158, 1419 (2006).

    Article  CAS  Google Scholar 

  4. M. Jo, Y.-S. Hong, J. Choo, and J. Cho: Effect of LiCoO2 cathode nanoparticle size on high rate performance for Li-ion batteries. J. Electrochem. Soc. 156, A430 (2009).

    Article  CAS  Google Scholar 

  5. N.N. Sinha and N. Munichandraiah: The effect of particle size on performance of cathode materials of Li-ion batteries. J. Indian Inst. Sci. 89, 381 (2009).

    CAS  Google Scholar 

  6. H. Liang, X. Qiu, S. Zhang, Z. He, W. Zhu, and L. Chen: High performance lithium cobalt oxides prepared in molten KCl for rechargeable lithium-ion batteries. Electrochem. Commun. 6, 505 (2004).

    Article  CAS  Google Scholar 

  7. K.S. Tan, M.V. Reddy, G.V. Subba Rao, and B.V.R. Chowdari: High-performance LiCoO2 by molten salt (LiNO3:LiCl) synthesis for Li-ion batteries. J. Power Sources 147, 241 (2005).

    Article  CAS  Google Scholar 

  8. J. Fu, Y. Bai, C. Liu, H. Yu, and Y. Mo: Physical characteristic study of LiCoO2 prepared by molten salt synthesis method in 550–800 °C. Mater. Chem. Phys. 115, 105 (2009).

    Article  CAS  Google Scholar 

  9. C.-H. Han, Y.-S. Hong, C.M. Park, and K. Kim: Synthesis and electrochemical properties of lithium cobalt oxides prepared by molten-salt synthesis using the eutectic mixture of LiCl–Li2CO3. J. Power Sources 92, 95 (2001).

    Article  CAS  Google Scholar 

  10. A.R. Kamali and D.J. Fray: Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 40, 1835 (2014).

    Article  CAS  Google Scholar 

  11. M.V. Smirnov and O.Yu. Tkacheva: Interaction of oxygen with molten alkali chlorides. Electrochim. Acta 37, 2681 (1992).

    Article  CAS  Google Scholar 

  12. Yu.S. Chekryshkin, A.N. Chudinov, T.A. Rozdyalovskaya, and A.A. Fedorov: The oxidation of zinc and barium chlorides with oxygen to obtain chlorine and finely dispersed zinc oxide. Russ. J. Appl. Chem. 83, 1461 (2010).

    Article  CAS  Google Scholar 

  13. V.L. Cherginets: Oxoacidity: reactions of oxo-compounds in ionic solvents. In Comprehensive Chemical Kinetics (Elsevier Science Ltd., Oxford, 2005).

    Google Scholar 

  14. G. Delarue: Réactions chimiques mettanten en jeu les ions O2– et S2– dans l’eutectique LiCl-KCl fondu. Bull. Soc. Chim. Fr. 1654 (1960).

    Google Scholar 

  15. B.L. Tremillon and G.S. Picard: Chemical solubilization of metal oxides and sulfides in chloride melts by means of chlorination agents. In Molten Salt Chemistry: An Introduction and Selected Applications (Proceedings of the NATO Advanced Study Institute, Camerino, 1986), p. 305.

    Google Scholar 

  16. M. Wang and A. Navrotsky: Enthalpy of formation of LiNiO2, LiCoO2 and their solid solution, LiNi1–xCoxO2. Solid State Ionics 166, 167 (2004).

    Article  CAS  Google Scholar 

  17. J. Bréger, K. Kang, J. Cabana, G. Ceder, and C.P. Grey: NMR, PDF and RMC study of the positive electrode material Li(Ni0.5Mn0.5)O2 synthesized by ion-exchange methods. J. Mater. Chem. 17, 3167 (2007).

    Article  Google Scholar 

  18. T. Usami, M. Kurata, T. Inoue, J. Jenkins, H. Sims, S. Beetham, and D. Brown: Pyrometallurgical reduction of unirradiated TRU oxides by lithium in a lithium chloride medium. In Pyrochemical Separations (Workshop Proceedings, Avignon, 2000), p. 165.

    Google Scholar 

  19. T.A. Anufrieva and L.E. Derlyukova: Reactions of cobalt oxide with chlorine. Russ. J. Inorg. Chem. 52, 1840 (2007).

    Article  Google Scholar 

  20. I. Barin: Thermochemical data of pure substances (1993).

    Google Scholar 

  21. O.V. Bushkova, O.L. Andreev, N.N. Batalov, S.N. Shkerin, M.V. Kuznetsov, A.P. Tyutyunnik, O.V. Koryakova, E.H. Song, and H.J. Chung: Chemical interactions in the cathode half-cell of lithium-ion batteries: part I. Thermodynamic simulation. J. Power Sources 157, 477 (2006).

    Article  CAS  Google Scholar 

  22. M. Antaya, K. Cearns, J.S. Preston, J.N. Reimers, and J.R. Dahn: In situ growth of layered, spinel, and rock-salt LiCoO2 by laser ablation deposition. J. Appl. Phys. 76, 2799 (1994).

    Article  CAS  Google Scholar 

  23. G.G. Amatucci, J.M. Tarascon, D. Larcher, and L.C. Klein: Synthesis of electrochemically active LiCoO2 and LiNiO2 at 100 °C. Solid State Ionics 84, 169 (1996).

    Article  CAS  Google Scholar 

  24. B.A. DeAngelis, R.E. Newnham, and W.B. White: Factor group analysis of the vibrational spectra of crystals: a review and consolidation. Am. Mineral. 57, 255 (1972).

    CAS  Google Scholar 

  25. W. Huang and R. Frech: Vibrational spectroscopic and electrochemical studies of the low and high temperature phases of LiCo1–xMxO2 (M = Ni or Ti). Solid State Ionics 86–88, 395 (1996).

    Article  Google Scholar 

  26. C.M. Julien and M. Massot: Vibrational spectroscopy of electrode materials for rechargeable lithium batteries: III. Oxide frameworks. In Advanced Techniques for Energy Sources Investigation and Testing (Proceedings of the International Workshop, Sofia, 2004), p. L3–1.

    Google Scholar 

  27. W.-D. Yang, C.-Y. Hsieh, H.-J. Chuang, and Y.-S. Chen: Preparation and characterization of nanometric-sized LiCoO2 cathode materials for lithium batteries by a novel sol–gel method. Ceram. Int. 36, 135 (2010).

    Article  CAS  Google Scholar 

  28. O.V. Komova, V.I. Simagina, N.V. Kosova, O.V. Netskina, G.V. Odegova, T.Yu. Samoilenko, E.T. Devyatkina, and A.V. Ishchenko: LiCoO2-supported catalysts for hydrogen generation from sodium borohydride solution. Chem. Sustainable Dev. 15, 181 (2007).

    CAS  Google Scholar 

  29. J. Akimoto, Y. Gotoh, and Y. Oosawa: Synthesis and structure refinement of LiCoO2 single crystals. J. Solid State Chem. 141, 298 (1998).

    Article  CAS  Google Scholar 

  30. H.J. Orman and P.J. Wiseman: Cobalt(III) lithium oxide, CoLiO2: structure refinement by powder neutron diffraction. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 40, 12 (1984).

    Article  Google Scholar 

  31. Y. Shao-Horn, L. Croguennec, C. Delmas, E.C. Nelson, and M.A. O’Keefe: Atomic resolution of lithium ions in LiCoO2. Nat. Mater. 2, 464 (2003).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to Dr B. Antonov from the Institute of High-Temperature Electrochemistry for performing the XRD experiments and the useful discussion on the results obtained. This study was supported by the Russian Foundation for Basic Research (grant no. 11-03-00042-a) and the Ural Branch of the Russian Academy of Sciences (grant no. 11-3-NP-660).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Khokhlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khokhlov, V., Modenov, D., Dokutovich, V. et al. Lithium oxide solution in chloride melts as a medium to prepare LiCoO2 nanoparticles. MRS Communications 4, 15–18 (2014). https://doi.org/10.1557/mrc.2014.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2014.2

Navigation