Skip to main content
Log in

The crystal structure of p-type transparent conductive oxide CuBO2

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We employed ab initio global structural prediction algorithms to obtain the ground-state structure of CuBO2 This is a very promising p-type transparent conductive oxide that was synthesized recently, and thought to belong to the delafossite family. We proved that the true ground state is certainly not the delafossite structure, and that the most promising candidate is a low symmetry monoclinic phase. This is still a layered structure, but with boron and copper having a different coordination with respect to the delafossite phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Table 1
Figure 2

Similar content being viewed by others

References

  1. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono: P-type electrical conduction in transparent thin films of CuAlO2. Nature, 389, 939 (1997).

    Article  CAS  Google Scholar 

  2. G. Thomas: Invisible circuits. Nature, 389, 907 (1997).

    Article  CAS  Google Scholar 

  3. M. Snure and A. Tiwari: A p-type transparent oxide CuBO2. Appl. Phys. Lett., 91, 092123 (2007).

    Article  Google Scholar 

  4. D. Scanlon, A. Walsh, and G. Watson: Understanding the p-type conduction properties of the transparent conducting oxide CuBO2: a density functional theory analysis. Chem. Mater., 21, 4568 (2009).

    Article  CAS  Google Scholar 

  5. J. Heyd, G. E. Scuseria, and M. Ernzerhof: Erratum: “Hybrid functionals based on a screened coulomb potential”. J. Chem. Phys., 124, 219906 (2006).

    Article  Google Scholar 

  6. F. Trani, J. Vidal, S. Botti, and M. A. L. Marques: Band structures of delafossite transparent conductive oxides from a self-consistent GW approach. Phys. Rev. B, 82, 085115 (2010).

    Article  Google Scholar 

  7. J. Vidal, F. Trani, F. Bruneval, M. A. L. Marques, and S. Botti: Effects of electronic and lattice polarization on the band structure of delafossite transparent conductive oxides. Phys. Rev. Lett., 104, 136401 (2010).

    Article  Google Scholar 

  8. S. Goedecker: Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys., 120, 9911 (2004).

    Article  CAS  Google Scholar 

  9. M. Amsler and S. Goedecker: Crystal structure prediction using the minima hopping method. J. Chem. Phys., 133, 224104 (2010).

    Article  Google Scholar 

  10. J. A. Flores-Livas, M. Amsler, T. J. Lenosky, L. Lehtovaara, S. Botti, M. A. Marques, and S. Goedecker: High-pressure structures of disilane and their superconducting properties. Phys. Rev. Lett., 108, 117004 (2012).

    Article  Google Scholar 

  11. M. Amsler, J. A. Flores-Livas, T. D. Huan, S. Botti, M. A. Marques, and S. Goedecker: Novel structural motifs in low energy phases of LiAlH4. Phys. Rev. Lett., 108, 205505 (2012).

    Article  Google Scholar 

  12. S. Botti, J. A. Flores-Livas, M. Amsler, S. Goedecker, and M. A. L. Marques: Low-energy silicon allotropes with strong absorption in the visible for photovoltaic applications. Phys. Rev. B, 86, 121204(R) (2012).

    Article  Google Scholar 

  13. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169 (1996).

    Article  CAS  Google Scholar 

  14. J. P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865 (1996).

    Article  CAS  Google Scholar 

  15. B. U. Köhler and M. Jansen: Darstellung und strukturdaten von delafossiten CuMO2 (M = Al, Ga, Sc, Y). Z. Anorg. Allg. Chem., 543, 73 (1986).

    Article  Google Scholar 

  16. T. Arnold, D. J. Payne, A. Bourlange, J. P. Hu, R. G. Egdell, L. F. J. Piper, L. Colakerol, A. De Masi, P.-A. Glans, T. Learmonth, K. E. Smith, J. Guo, D. O. Scanlon, A. Walsh, B. J. Morgan, and G. W. Watson: X-ray spectroscopic study of the electronic structure of CuCrO2. Phys. Rev. B, 79, 075102 (2009).

    Article  Google Scholar 

  17. H. T. Stokes and D. M. Hatch: J. Appl. Crystallogr., 38, 237 (2005).

    Article  CAS  Google Scholar 

  18. M. Ernzerhof and G. E. Scuseria: J. Chem. Phys., 110, 5029 (1999).

    Article  CAS  Google Scholar 

  19. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B, 57, 1505 (1998).

    Article  CAS  Google Scholar 

  20. J. Pellicer-Porres, A. Segura, A. Gilliland, A. Munoz, P. Rodriguez-Hernendez, D. Kim, M. Lee, and T. Kim: On the band gap of CuAlO2 delafossite. Appl. Phys. Lett., 88, 181904 (2006).

    Article  Google Scholar 

  21. J. Tate, H. L. Ju, J. C. Moon, A. Zakutayev, A. P. Richard, J. Russell, and D. H. McIntyre: Origin of p-type conduction in single-crystal CuAlO2. Phys. Rev. B, 80, 165206 (2009).

    Article  Google Scholar 

  22. D. O. Scanlon and G. W. Watson: Conductivity limits in CuAlO2 from screened-hybrid density functional theory. J. Chem. Phys. Lett., 1, 3125 (2010).

    Google Scholar 

  23. X. Nie, S. Wei, and S. Zhang: Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides. Phys. Rev. Lett., 88, 066405 (2002).

    Article  Google Scholar 

  24. D. O. Scanlon, K. G. Godinho, B. J. Morgan, and G. W. Watson: Understanding conductivity anomalies in Cu-based delafossite transparent conducting oxides: theoretical insights. J. Chem. Phys., 132, 024707 (2010).

    Article  Google Scholar 

  25. S. Santra, N.S. Das, and K.K. Chattopadhyay: Sol–gel synthesis and characterization of wideband gap p-type nanocrystalline CuBO2. Mater. Lett., 92, 198 (2013).

    Article  CAS  Google Scholar 

  26. S. Botti and M.A.L. Marques: Phys. Rev. Lett., 110, 226404 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

M.A.L.M. and S.B. acknowledge the financial support from the French ANR projects ANR-08-CEXC8-008-01 and ANR-12-BS04-0001-02. Computational resources were provided by GENCI (project x2012096017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Botti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerqueira, T.F.T., Sarmiento-Pérez, R., Trani, F. et al. The crystal structure of p-type transparent conductive oxide CuBO2. MRS Communications 3, 157–160 (2013). https://doi.org/10.1557/mrc.2013.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.21

Navigation