Skip to main content
Log in

Strong piezoelectricity in individual GaN nanowires

  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

GaN nanowires are promising building blocks for future nanoelectronics, optoelectronic devices, and nanogenerators. Here, we report on strong piezoelectricity in individual single-crystal GaN nanowires revealed by direct measurement of the piezoelectric constant using piezo-response force microscopy. Our experimental results show that individual c-axis GaN nanowires, with a characteristic dimension as small as 65 nm, show a shear piezoelectric constant of tid15~ 10 pm/V, which is several times that measured in bulk. The revealed strong piezoelectricity could open promising opportunities for application of GaN nanowires in nanowire-based sensors and generators for self-powered nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. P. Yang, R. Yan, and M. Fardy: Semiconductor nanowire: what’s next? Nano Lett. 10, 1529–1536 (2010).

    Article  CAS  Google Scholar 

  2. Z.L. Wang and J. Song: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

    Article  CAS  Google Scholar 

  3. R. Yang, Y. Qin, L. Dai, and Z.L. Wang: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009).

    Article  CAS  Google Scholar 

  4. Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit, and M.C. McAlpine: Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331–133 6 (2011).

    Article  CAS  Google Scholar 

  5. R. Agrawal, B. Peng, E.E. Gdoutos, and H.D. Espinosa: Elasticity size effects in ZnO nanowires-a combined experimental-computational approach. Nano Lett. 8, 3668–3674 (2008).

    Article  CAS  Google Scholar 

  6. R.A. Bernal, R. Agrawal, B. Peng, K.A. Bertness, N.A. Sanford, A.V. Davydov, and H.D. Espinosa: Effect of growth orientation and diameter on the elasticity of GaN Nanowires. A combined in situ TEM and atomistic modeling investigation. Nano Lett. 11, 548–555 (2011).

    Article  CAS  Google Scholar 

  7. Y. Huang, X. Duan, Y. Cui, and C.M. Lieber: Gallium nitride nanowire nanodevices. Nano Lett. 2, 101–104 (2002).

    Article  CAS  Google Scholar 

  8. Z. Zhong, F. Qian, D. Wang, and C.M. Lieber: Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343–346 (2003).

    Article  CAS  Google Scholar 

  9. J.C. Johnson, H.-J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, and R.J. Saykally: Single gallium nitride nanowire lasers. Nat Mater. 1,106–110 (2002).

    Article  CAS  Google Scholar 

  10. C.-T. Huang, J. Song, W.-F. Lee, Y. Ding, Z. Gao, Y. Hao, L.-J. Chen, and Z.L. Wang: GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132(13), 4766–771 (2010).

    Article  CAS  Google Scholar 

  11. X. Xu, A. Potie, R. Songmuang, J. Lee, B. Bercu, T. Baron, B. Salem, and L. Montes: An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires. Nanotechnology 22, 105704 (2011).

    Article  CAS  Google Scholar 

  12. P. Guthner and K. Dransfeld: Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 61, 1137 (1992).

    Article  Google Scholar 

  13. O. Kolosov, A. Gruverman, J. Hatano, K. Takahashi, and H. Tokumoto: Manoscale visualization and control of ferroelectric domains by atomic force microscopy. Phys. Rev. Lett. 74, 4309–4312 (1995).

    Article  CAS  Google Scholar 

  14. M.-H. Zhao, Z.-L. Wang, and S.X. Mao: Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4,587–590 (2004).

    Article  CAS  Google Scholar 

  15. J. Wang, C.S. Sandu, E. Colla, Y. Wang, W. Ma, R. Gysel, H.J. Trodahl, M. Setterb, and M. Kuball: Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires. Appl. Phys. Lett. 90, 133107 (2007).

    Article  CAS  Google Scholar 

  16. W.S. Yun, J.J. Urban, Q. Gu, and H. Park: Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano Lett. 2, 447–450 (2002).

    Article  CAS  Google Scholar 

  17. Z. Wang, J. Hu, and M.-F. Yua: One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Appl. Phys. Lett. 89, 263119 (2006).

    Article  CAS  Google Scholar 

  18. M. Minary-Jolandan and M.-F. Yu: Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. ACS Nano 3, 1859–1863 (2009).

    Article  CAS  Google Scholar 

  19. B.J. Rodriguez, A. Gruverman, A.I. Kingon, and R.J. Nemanich: Piezoresponse force microscopy for piezoelectric measurements of Ill-nitride materials. J. Crystal Growth 246, 252–258 (2002).

    Article  CAS  Google Scholar 

  20. R. Agrawal and H.D. Espinosa: Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 11(2), 786–790 (2011).

    Article  CAS  Google Scholar 

  21. I.K. Bdikin, J. Gracio, R. Ayouchi, R. Schwarz, and A.L. Kholkin: Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method. Nanotechnology 21, 235703 (2010).

    Article  CAS  Google Scholar 

  22. K.A. Bertness, A. Roshko, L.M. Mansfield, T.E. Harvey, and N.A. Sanford: Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy. J. Crystal Growth 310, 3154–3158 (2008).

    Article  CAS  Google Scholar 

  23. M. Minary-Jolandan and M.-F. Yu: Nanoscale characterization of isolated individual type I collagen fibrils: Polarization and piezoelectricity. Nanotechnology 20, 085706 (2009).

    Article  CAS  Google Scholar 

  24. F. Bernardini and V. Fiorentini: First-principles calculation of the piezoelectric tensor d of III-V nitrides. Appl. Phys. Lett. 80, 4145 (2002).

    Article  CAS  Google Scholar 

  25. S. Muensit, E.M. Goldys, and I.L. Guy: Shear piezoelectric coefficients of gallium nitride and aluminum nitride. Appl. Phys. Lett. 75, 3965 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Kris Bertness and Norman Sanford of the National Institute of Standards and Technology Optoelectronic Division for providing the nanowire samples. HDE acknowledges the support of the NSF through awards DMR-0907196 and EEC-0647560 (NSF-NSEC).

Author information

Authors and Affiliations

Authors

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit {rs|http://dx.doi.org/10.1557/mrc.2011.14|url|}

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minary-Jolandan, M., Bernal, R.A. & Espinosa, H.D. Strong piezoelectricity in individual GaN nanowires. MRS Communications 1, 45–48 (2011). https://doi.org/10.1557/mrc.2011.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2011.14

Navigation