Skip to main content

Advertisement

Log in

Recent trends on density functional theory–assisted calculations of structures and properties of metal–organic frameworks and metal–organic frameworks-derived nanocarbons

  • 2D and Nanomaterials
  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Metal–organic frameworks (MOFs) possess tuneable properties and a variety of important applications in the areas of catalysis, adsorption, gas storage, and separation, among others. Herein, recent computational studies by density functional theory (DFT) applied for simulations of MOF structure and complex architecture determination, prediction of properties, and computational characterization, including large-scale screening and geometrical properties of hypothetical MOFs, diffusion and adsorption processes in MOFs, are reviewed. DFT calculations have been applied in the MOF area to study chemical stability; mechanical, photophysical, optical, and magnetic properties; photoluminescence; porosity; and semiconductor or metallic character. The prediction of MOF analogs with open-metal sites, studies of chemical bonding and the prediction of energies by quantum mechanics allows reducing experimental efforts in the creation of MOF/polymer membranes, adsorbents for CO2 uptake, separation of C2H2/CH4, C2H2/CO2, and inert gases, radionuclides sequestration, and water adsorption, as well as other promising advances. For the MOF-derived carbons, a lack of profound DFT investigations is currently observed, being mainly restricted to the electrocatalysis area (nitrogen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction), resulting applications in batteries and other storage devices, CO2 sequestration, and absorbance of organic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Notes

  1. See electrocatalytic CO2 reduction below.

References

  1. M. Schröder, ed.: Functional metal-organic frameworks: Gas storage, separation and catalysis. In Part of the Topics in Current Chemistry Book Series, Vol. 293 (Springer, Berlin Heidelberg, Germany, 2010); p. 262.

    Google Scholar 

  2. D. Farrusseng, ed.: Metal–Organic Frameworks Applications from Catalysis to Gas Storage (Wiley-VCH, Weinheim, Germany, 2011); p. 414.

    Google Scholar 

  3. B. Chen and G. Qian, eds.: Metal–organic frameworks for photonics applications. In Part of the Series Structure and Bonding, Vol. 157 (Springer-Verlag, Berlin Heidelberg, Germany, 2014); p. 189.

  4. L.R. MacGillivray and C.M. Lukehart, eds.: Metal–Organic Framework Materials (John Wiley & Sons Ltd., Chichester, UK, 2014); p. 592.

    Google Scholar 

  5. P. Cheng, ed.: Lanthanide metal–organic frameworks. In Part of the Series Structure and Bonding, Vol. 163 (Springer, Berlin Heidelberg, Germany, 2015); p. 371.

  6. H. García and S. Navalón, eds.: Metal–Organic Frameworks: Applications in Separations and Catalysis (Wiley-VCH Verlag, Weinheim, Germany, 2018); p. 536.

    Google Scholar 

  7. O.M. Yaghi, M.J. Kalmutzki, and C.S. Diercks: Introduction to Reticular Chemistry. Metal–Organic Frameworks and Covalent Organic Frameworks (Wiley-VCH Verlag, Weinheim, Germany, 2019); p. 536.

    Book  Google Scholar 

  8. V.V. Butova, M.A. Soldatov, A.A. Guda, K.A. Lomachenko, and C. Lamberti: Metal–organic frameworks: Structure, properties, methods of synthesis, and characterization. Russ. Chem. Rev. 85, 280 (2016).

    Article  CAS  Google Scholar 

  9. L. Jiao, J.Y. Ru Seow, W. Scott Skinner, Z.U. Wang, and H-L. Jiang: Metal–organic frameworks: Structures and functional applications. Mater. Today 27, 43 (2019).

    Article  CAS  Google Scholar 

  10. X-J. Yin and L-G. Zhu: High-efficiency photocatalytic performance and mechanism of silver-based metal–organic framework. J. Mater. Res. 34, 991 (2019).

    Article  CAS  Google Scholar 

  11. F. Mu, S. Zhou, Y. Wang, and J. Wang: Bimetallic metal–organic frameworks-derived mesoporous CdxZn1−xS polyhedrons for enhanced photocatalytic hydrogen evolution. J. Mater. Res. 34, 1773 (2019).

    Article  CAS  Google Scholar 

  12. L. Zhang, H. Li, H. Xie, T. Chen, C. Yang, and J. Wang: MOF-driven ultra-small hollow Co9S8 nanoparticles embedded in porous carbon for lithium-ion batteries. J. Mater. Res. 33, 1496 (2018).

    Article  CAS  Google Scholar 

  13. Y.A. Mezenov, A.A. Krasilin, V.P. Dzyuba, A. Nominé, and V.A. Milichko: Metal–organic frameworks in modern physics: Highlights and perspectives. Adv. Sci. 6, 1900506 (2019).

    Article  CAS  Google Scholar 

  14. F.X. Llabrés Xamena and J. Gascon, eds.: Metal Organic Frameworks as Heterogeneous Catalysts (RSC Publishing, Cambridge, UK, 2013); p. 432.

    Google Scholar 

  15. J. Jiang, ed.: Metal–Organic Frameworks Materials: Modeling towards Potential Engineering Applications (CRC Press Taylor & Francis Group, LLC, Boca Raton, Florida, 2015); p. 578.

    Google Scholar 

  16. P. Ramasami, ed.: Density Functional Theory: Advances in Applications (Walter de Gruyter, Berlin, Germany. 2018); p. 233.

    Google Scholar 

  17. A. Vallecillo and J. Gray: Theory and practice of model transformations. In Proceedings of the First International Conference CMT 2008, ETH Zürich, Switzerland (Springer Science & Business Media, Switzerland, 2008).

    Google Scholar 

  18. A. Tarzia, M. Takahashi, P. Falcaro, A.W. Thornton, C.J. Doonan, and D.M. Huang: High-throughput screening of metal–organic frameworks for macroscale heteroepitaxial alignment. ACS Appl. Mater. Interfaces 10, 40938 (2018).

    Article  CAS  Google Scholar 

  19. S. Kaskel ed.: The Chemistry of Metal–Organic Frameworks. Synthesis, Characterization, and Applications (Wiley-VCH Verlag, Weinheim, Germany, 2016); p. 849.

    Google Scholar 

  20. W.C. Witt, B.G. del Rio, J.M. Dieterich, and E.A. Carter: Orbital-free density functional theory for materials research. J. Mater. Res., 33, 777 (2018).

    Article  CAS  Google Scholar 

  21. Density Functional Theory. Available at: https://www.sciencedirect.com/topics/physics-and-astronomy/density-functional-theory (accessed April 1, 2020).

  22. S. Bureekaew and R. Schmid: Hypothetical 3D-periodic covalent organic frameworks: Exploring the possibilities by a first principles derived force field. CrystEngComm 15, 1551 (2013).

    Article  CAS  Google Scholar 

  23. Y.G. Chung, J. Camp, M. Haranczyk, B.J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O.K. Farha, D.S. Sholl, and R.Q. Snurr: Computation-ready, experimental metal–organic frameworks: A tool to enable high-throughput computation of nanoporous crystals. Chem. Mater. 26, 6185 (2014).

    Article  CAS  Google Scholar 

  24. Grand Canonical Monte Carlo. Available at: https://www.sciencedirect.com/topics/mathematics/grand-canonical-monte-carlo (accessed April 1, 2020).

  25. G. Maurin: Role of molecular simulations in the structure exploration of metal–organic frameworks: Illustrations through recent advances in the field. C. R. Chim. 19, 207 (2016).

    Article  CAS  Google Scholar 

  26. F-X. Coudert and A.H. Fuchs: Computational characterization and prediction of metal–organic framework properties. Coord. Chem. Rev. 307, 211 (2015).

    Article  CAS  Google Scholar 

  27. L.R. MacGillivray ed.: Metal–Organic Frameworks: Design and Application (John Wiley & Sons, Inc., Hoboken, New Jersey, 2010); p. 349.

    Google Scholar 

  28. T.G. Glover and B. Mu, eds.: Gas Adsorption in Metal–Organic Frameworks Fundamentals and Applications (CRC Press Taylor & Francis, Boca Raton, 2018); p. 530.

    Google Scholar 

  29. O.L. Ortiz and L.D. Ramírez, eds.: Coordination Polymers and Metal–Organic Frameworks: Properties, Types and Applications (Nova Science Publishers, Inc., New York, 2012); p. 307.

    Google Scholar 

  30. J.D. Evans, B. Garai, H. Reinsch, W. Li, S. Dissegna, V. Bon, I. Senkovska, R.A. Fischer, S. Kaskel, C. Janiak, N. Stock, and D. Volkmer: Metal–organic frameworks in Germany: From synthesis to function. Coord. Chem. Rev. 380, 378 (2019).

    Article  CAS  Google Scholar 

  31. G. Fraux, S. Chibani, and F-X. Coudert: Modelling of framework materials at multiple scales: Current practices and open questions. Philos. Trans. R. Soc., A 377, 20180220 (2019).

    Article  CAS  Google Scholar 

  32. Computation-Ready, Experimental (CoRE) Metal–Organic Frameworks Database. Available at: https://gregchung.github.io/CoRE-MOFs (accessed March 5, 2020).

  33. P.Z. Moghadam, A. Li, S.B. Wiggin, A. Tao, A.G.P. Maloney, P.A. Wood, S.C. Ward, and D. Fairen-Jimenez: Development of a cambridge structural database subset: A collection of metal–organic frameworks for past, present, and future. Chem. Mater. 29, 2618 (2017).

    Article  CAS  Google Scholar 

  34. C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, and R.Q. Snurr: Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83 (2011).

    Article  CAS  Google Scholar 

  35. Z-G. Gu, L. Heinke, C. Woll, T. Neumann, W. Wenzel, Q. Li, K. Fink, O.D. Gordan, and D.R.T. Zahn: Experimental and theoretical investigations of the electronic band structure of metal–organic frameworks of HKUST-1 type. Appl. Phys. Lett. 107, 183301 (2015).

    Article  CAS  Google Scholar 

  36. N. Zhu, M.J. Lennox, T. Duren, and W. Schmitt: Polymorphism of metal–organic frameworks: Direct comparison of structures and theoretical N2-uptake of topological pto- and tbo-isomers. Chem. Commun. 50, 4207 (2014).

    Article  CAS  Google Scholar 

  37. K.A.H. Alzahrani and R.J. Deeth: Molecular modeling of zinc paddlewheel molecular complexes and the pores of a flexible metal organic framework. J. Mol. Model. 22, 80 (2016).

    Article  CAS  Google Scholar 

  38. Quantum-Expresso. Available at: https://www.quantum-espresso.org/ (accessed April 1, 2020).

  39. G.D. Degaga, R. Pandey, C. Gupta, and L. Bharadwaj: Tailoring of the electronic property of Zn-BTC metal–organic framework via ligand functionalization: An ab initio investigation. RSC Adv. 9, 14260 (2019).

    Article  CAS  Google Scholar 

  40. A. de Oliveira, G. Ferreira de Lima, and H. Avelino De Abreu: Structural and electronic properties of M-MOF-74 (M = Mg, Co or Mn). Chem. Phys. Lett. 691, 283 (2018).

    Article  CAS  Google Scholar 

  41. C.F. Matta and R.J. Boyd: The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design (Wiley, New York, 2007); p. 567.

    Book  Google Scholar 

  42. P. Fuentealba, E. Chamorro, and J.C. Santos: Chapter 5 understanding and using the electron localization function. Theor. Comput. Chem. 19, 57 (2007).

    Article  CAS  Google Scholar 

  43. Generalized Gradient Approximation. Available at: https://www.sciencedirect.com/topics/physics-and-astronomy/generalized-gradient-approximation (accessed April 1, 2020).

  44. M. Witman, S. Ling, S. Anderson, L. Tong, K.C. Stylianou, B. Slater, B. Smitac, and M. Haranczyk: In silico design and screening of hypothetical MOF-74 analogs and their experimental synthesis. Chem. Sci. 7, 6263 (2016).

    Article  CAS  Google Scholar 

  45. L-M. Yang, P. Ravindran, P. Vajeeston, S. Svelle, and M. Tilset: A quantum mechanically guided view of Cd-MOF-5 from formation energy, chemical bonding, electronic structure, and optical properties. Microporous Mesoporous Mater. 175, 50 (2013).

    Article  CAS  Google Scholar 

  46. R.J. Bartlett, V.F. Lotrich, and I.V. Schweigert: Ab initio density functional theory: The best of both worlds? J. Chem. Phys. 123, 062205 (2005).

    Article  CAS  Google Scholar 

  47. L-M. Yang, P. Vajeeston, P. Ravindran, H. Fjellvag, and M. Tilset: Theoretical investigations on the chemical bonding, electronic structure, and optical properties of the metal–organic framework MOF-5. Inorg. Chem. 49, 10283 (2010).

    Article  CAS  Google Scholar 

  48. The Vienna Ab Initio Simulation Package: Atomic Scale Materials Modelling From First Principles. Available at: www.vasp.at (accessed April 2, 2020).

  49. C.K. Brozek, V.K. Michaelis, T-C. Ong, L. Bellarosa, N. López, R.G. Griffin, and M. Dincă: Dynamic DMF binding in MOF-5 enables the formation of metastable cobalt-substituted MOF-5 analogues. ACS Cent. Sci. 1, 252 (2015).

    Article  CAS  Google Scholar 

  50. J. Nishida, A. Tamimi, H. Fei, S. Pullen, S. Ott, S.M. Cohen, and M.D. Fayer: Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy. Proc. Natl. Acad. Sci. USA 111, 18442 (2014).

    Article  CAS  Google Scholar 

  51. Y. Liu and H. Liu: Classical density functional theory for fluids adsorption in MOFs. In Metal–Organic Frameworks, F. Zafar and E. Sharmin, eds. (INTECH, London, England, 2016) DOI: https://doi.org/10.5772/64632.

    Google Scholar 

  52. M. Ding, X. Cai, and H-L. Jiang: Improving MOF stability: Approaches and applications. Chem. Sci. 10, 10209 (2019).

    Article  CAS  Google Scholar 

  53. D-M. Chen, N-N. Zhang, J-Y. Tian, C-S. Liu, and M. Du: Pore modulation of metal–organic frameworks towards enhanced hydrothermal stability and acetylene uptake via incorporation of different functional brackets. J. Mater. Chem. A 5, 4861–4867 (2017).

    Article  CAS  Google Scholar 

  54. P.Z. Moghadam, S.M.J. Rogge, A. Li, C-M. Chow, J. Wieme, N. Moharrami, M. Aragones-Anglada, G. Conduit, D.A. Gomez-Gualdron, V. Van Speybroeck, and D. Fairen-Jimenez: Structure-mechanical stability relations of metal–organic frameworks via machine learning. Matter 1, 219 (2019).

    Article  Google Scholar 

  55. H.C. Dong, H.L. Nguyen, H.M. Le, N. Thoai, Y. Kawazoe, and D. Nguyen-Manh: Monitoring mechanical, electronic, and catalytic trends in a titanium metal organic framework under the influence of guest-molecule encapsulation using density functional theory. Sci. Rep. 8, 16651 (2018).

    Article  CAS  Google Scholar 

  56. J.K. Bristow, D. Tiana, and A. Walsh: Transferable force field for metal−organic frameworks from first-principles: BTW-FF. J. Chem. Theory Comput. 10, 4644 (2014).

    Article  CAS  Google Scholar 

  57. Y. Luo, M. Ahmad, A. Schug, and M. Tsotsalas: Rising up: Hierarchical metal–organic frameworks in experiments and simulations. Adv. Mater. 31, 1901744 (2019).

    Article  CAS  Google Scholar 

  58. O. Kwon, J. Yeong Kim, S. Park, J. Hwa Lee, J. Ha, H. Park, H. Ri Moon, and J. Kim: Computer-aided discovery of connected metalorganic frameworks. Nat. Commun. 10, 3620 (2019).

    Article  CAS  Google Scholar 

  59. S. Abednatanzi, P. Gohari Derakhshandeh, H. Depauw, F-X. Coudert, H. Vrielinck, P. Van Der Voort, and K. Leus: Mixed-metal metal–organic frameworks. Chem. Soc. Rev. 48, 2535 (2019).

    Article  CAS  Google Scholar 

  60. D.A. Giannakoudakis and T.J. Bandosz: Building MOF nanocomposites with oxidized graphitic carbon nitride nanospheres: The effect of framework geometry on the structural heterogeneity. Molecules 24, 4529 (2019).

    Article  CAS  Google Scholar 

  61. W.A. Hofer and K. Palotas. Non-linear density functional theory: A direct method to calculate many-electron charge densities. (2005). Online published, Available at: https://arxiv.org/abs/cond-mat/0508516 (accessed April 2, 2020).

  62. Crystal. Available at: http://www.crystal.unito.it/index.php (accessed April 2, 2020).

  63. L. Wilbraham, F-X. Coudert, and I. Ciofini: Modelling photophysical properties of metal–organic frameworks: A density functional theory based approach. Phys. Chem. Chem. Phys. 18, 25176 (2016).

    Article  CAS  Google Scholar 

  64. S. Schwalbe, K. Trepte, G. Seifert, and J. Kortus: Screening for high-spin metal organic frameworks (MOFs): Density functional theory study on DUT-8(M1,M2) (with mi = V,…,Cu). Phys. Chem. Chem. Phys. 18, 8075 (2016).

    Article  CAS  Google Scholar 

  65. S. Barthel, E.V. Alexandrov, D.M. Proserpio, and B. Smit: Distinguishing metal−organic frameworks. Cryst. Growth Des. 18, 1738 (2018).

    Article  CAS  Google Scholar 

  66. TOPOSPRO: A comprehensive system for geometrical and topological analysis of crystal structures. Available at: https://topospro.com/ (accessed April 2, 2020).

  67. M. Zhang, M. Bosch, T. Gentle IIIa, and H-C. Zhou: Rational design of metal–organic frameworks with anticipated porosities and functionalities. CrystEngComm 16, 4069 (2014).

    Article  CAS  Google Scholar 

  68. A. Sturluson, M.T. Huynh, A.R. Kaija, C. Laird, S. Yoon, F. Hou, Z. Feng, C.E. Wilmer, Y.J. Colon, Y.G. Chung, D.W. Siderius, and C.M. Simon: The role of molecular modeling & simulation in the discovery and deployment of metal–organic frameworks for gas storage and separation. Mol. Simul., 45, 1082 (2019).

    Article  CAS  Google Scholar 

  69. J. Landers, G.Y. Gor, and A.V. Neimark: Density functional theory methods for characterization of porous materials. Colloids Surf., A 437, 3 (2013).

    Article  CAS  Google Scholar 

  70. W.S. Jeong, D-W. Lim, S. Kim, A. Harale, M. Yoon, M. Paik Suh, and J. Kim: Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map. Proc. Natl. Acad. Sci. U. S. A. 114, 7923 (2017).

    Article  CAS  Google Scholar 

  71. T.M. Becker, L-C. Lin, D. Dubbeldam, and T.J.H. Vlugt: Polarizable force field for CO2 in M-MOF-74 derived from quantum mechanics. J. Phys. Chem. C 122, 24488 (2018).

    Article  CAS  Google Scholar 

  72. A.J. Allen, W. Wong-Ng, E. Cockayne, J.T. Culp, and C. Matranga: Structural basis of CO2 adsorption in a flexible metal–organic framework material. Nanomaterials, 9, 354 (2019).

    Article  CAS  Google Scholar 

  73. W. Wong-Ng, I. Williamson, M. Lawson, D.W. Siderus, J.T. Culp, Y-S. Chen, and L. Li: Electronic structure, pore size distribution, and sorption characterization of an unusual MOF, {[Ni(dpbz)][Ni(CN)4]}n, dpbz = 1,4-bis(4-pyridyl)benzene. J. Appl. Phys. 123, 245105 (2018).

    Article  CAS  Google Scholar 

  74. M. Arjmandi, M. Peyravi, M. Pourafshari Chenar, M. Jahanshahi, and A. Arjmandi: Study of adsorption of H2 and CO2 on distorted structure of MOF-5 framework: A comprehensive DFT study. J. Water Environ. Nanotechnol. 3, 70 (2018).

    CAS  Google Scholar 

  75. D. Nazarian, J.S. Camp, Y.G. Chung, R.Q. Snurr, and D.S. Sholl: Large-scale refinement of metal–organic framework structures using density functional theory. Chem. Mater. 29, 2521 (2017).

    Article  CAS  Google Scholar 

  76. H. Daglar and S. Keskin: High-throughput screening of metal organic frameworks as fillers in mixed matrix membranes for flue gas separation. Adv. Theory Simul. 2, 1900109 (2019).

    Article  CAS  Google Scholar 

  77. Y. Lin, C. Kong, and L. Chen: Amine-functionalized metal–organic frameworks: Structure, synthesis and applications. RSC Adv. 6, 32598 (2016).

    Article  CAS  Google Scholar 

  78. Y. Basdogana and S. Keskin: Simulation and modelling of MOFs for hydrogen storage. CrystEngComm 17, 261 (2015).

    Article  CAS  Google Scholar 

  79. Y.J. Colón and R.Q. Snurr: High-throughput computational screening of metalorganic frameworks. Chem. Soc. Rev. 43, 5735 (2014).

    Article  Google Scholar 

  80. A. Castañeda, M. Jurado, O. Matz, M. Calatayud, E. Rojas, and A. Maubert: Hydrogen adsorption in metal–organic frameworks Cu-BTC and Fe-BTC: A comparative theoretical study. J. Phys. Conf. 1221, 012016 (2019).

    Article  CAS  Google Scholar 

  81. Z. Ozturk, D. Ali Kose, A. Asan, B. Ozturk, O. Andac, and G. Ozkan: Hydrogen storage properties of mono- and bidentate MOF structured orotate complexes. J. Mater. Res. 29, 215 (2014).

    Article  CAS  Google Scholar 

  82. G.P. Dangi, R.S. Pillai, R.S. Somani, H.C. Bajaj, and R.V. Jasra: A density functional theory study on the interaction of hydrogen molecule with MOF-177. Mol. Simul. 36, 373 (2010).

    Article  CAS  Google Scholar 

  83. H. Demir, S.J. Stoneburner, W. Jeong, D. Ray, X. Zhang, O.K. Farha, C.J. Cramer, J.I. Siepmann, and L. Gagliardi: Metal–organic frameworks with metal-catecholates for O2/N2 separation. J. Phys. Chem. C 123, 12935 (2019).

    Article  CAS  Google Scholar 

  84. A. Nemati Vesali Azar, S. Velioglu, and S. Keskin: Large-scale computational screening of metal organic framework (MOF) membranes and MOF-based polymer membranes for H2/N2 separations. ACS Sustainable Chem. Eng. 7, 9525 (2019).

    Article  CAS  Google Scholar 

  85. S. Keskin and S. Alsoy Altinkaya: A review on computational modeling tools for MOF-based mixed matrix membranes. Computation 7, 36 (2019).

    Article  CAS  Google Scholar 

  86. A.N.V. Azar and S. Keskin: Computational screening of MOFs for acetylene separation. Front. Chem. 6, 36 (2018).

    Article  CAS  Google Scholar 

  87. Y. Liu, J. Liu, and J. Hu: Noble gas separation by a MOF with onedimensional channels. BMC Chem. Eng. 1, 3 (2019).

    Article  Google Scholar 

  88. S. Pandey, Z. Jia, B. Demaske, O.A. Ejegbavwo, W. Setyawan, C.H. Henager, Jr., N. Shustova, and S.R. Phillpot: Sequestration of radionuclides in metal−organic frameworks from density functional theory calculations. J. Phys. Chem. C 123, 26842 (2019).

    Article  CAS  Google Scholar 

  89. Y. Ming, N. Kumar, and D.J. Siegel: Water adsorption and insertion in MOF-5. ACS Omega 2, 4921 (2017).

    Article  CAS  Google Scholar 

  90. J. Zang, S. Nair, and D.S. Sholl: Prediction of water adsorption in copper-based metal–organic frameworks using force fields derived from dispersion-corrected DFT calculations. J. Phys. Chem. C 117, 7519 (2013).

    Article  CAS  Google Scholar 

  91. V. Bernales, M.A. Ortuño, D.G. Truhlar, C.J. Cramer, and L. Gagliardi: Computational design of functionalized metal−organic framework nodes for catalysis. ACS Cent. Sci. 4, 5 (2018).

    Article  CAS  Google Scholar 

  92. S. Siwaipram, S. Impeng, P.A. Bopp, and S. Bureekaew: Density Functional Theory Studies of Catalytic Sites in Metal–Organic Frameworks (INTECH, London, England, 2018).

    Google Scholar 

  93. A.S. Rosen, J.M. Notestein, and R.Q. Snurr: Identifying promising metal–organic frameworks for heterogeneous catalysis via high-throughput periodic density functional theory. J. Comput. Chem. 40, 1305 (2019).

    Article  CAS  Google Scholar 

  94. J. Li, T. Musho, J. Bright, and N. Wu: Functionalization of a metal–organic framework semiconductor for tuned band structure and catalytic activity. J. Electrochem. Soc. 166, H3029 (2019).

    Article  CAS  Google Scholar 

  95. J. Xu, Y. Kan, R. Huang, B. Zhang, B. Wang, K-H. Wu, Y. Lin, X. Sun, Q. Li, G. Centi, and D. Su: Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide. ChemSusChem 9, 1085 (2016).

    Article  CAS  Google Scholar 

  96. T. Sun, L. Xu, D. Wang, and Y. Li: Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 12, 2067 (2019).

    Article  CAS  Google Scholar 

  97. Y. Yan, T. He, B. Zhao, K. Qi, H. Liu, and B. Yu Xia: Metal/covalent–organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A 6, 15905 (2018).

    Article  CAS  Google Scholar 

  98. Y. Feng, Y. Zhang, G. Du, J. Zhang, and X. Qu: Experimental and first-principles study of a metal–organic framework with sulfur embedding cathode for enhanced performance lithium–sulfur battery. Sustainable Energy Fuels 2, 1828 (2018).

    Article  CAS  Google Scholar 

  99. K. Shen, X. Chen, J. Chen, and Y. Li: Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6, 5887 (2016).

    Article  CAS  Google Scholar 

  100. H. Li, L. Chi, C. Yang, L. Zhang, F. Yue, and J. Wang: MOF derived porous Co@C hexagonal-shaped prisms with high catalytic performance. J. Mater. Res. 31, 3069 (2016).

    Article  CAS  Google Scholar 

  101. L. Lux, K. Williams, and S. Ma: Heat-treatment of metal–organic frameworks for green energy applications. CrystEngComm 17, 10 (2015).

    Article  CAS  Google Scholar 

  102. Y. Li, L. Zhao, Z. Du, J. Du, W. Wang, Y. Wang, L. Zhao, X-M. Cao, and X. Zhong: Metal–organic framework derived Co,N-bidoped carbons as superior electrode catalysts for quantum dot sensitized solar cells. J. Mater. Chem. A 6, 2129 (2018).

    Article  CAS  Google Scholar 

  103. S. Mukherjee, D.A. Cullen, S. Karakalos, K. Liu, H. Zhang, S. Zhao, H. Xu, K.L. More, G. Wang, and G. Wu: Metal–organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 48, 217 (2018).

    Article  CAS  Google Scholar 

  104. X. Wang, Z. Mab, L. Chai, L. Xu, Z. Zhu, Y. Hu, J. Qian, and S. Huang: MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction. Carbon 141, 643 (2019).

    Article  CAS  Google Scholar 

  105. C. Li, S. Dong, R. Tang, X. Ge, Z. Zhang, C. Wang, Y. Lu, and L. Yin: Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries. Energy Environ. Sci. 11, 3201 (2018).

    Article  CAS  Google Scholar 

  106. J. Tang, R.R. Salunkhe, H. Zhang, V. Malgras, T. Ahamad, S.M. Alshehri, N. Kobayashi, S. Tominaka, Y. Ide, J. Ho Kim, and Y. Yamauchi: Bimetallic metal–organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci. Rep. 6, 30295 (2016).

    Article  CAS  Google Scholar 

  107. L. Li, X. Ma, R. Chen, C. Wang, and M. Lu: Nitrogen-containing functional groups-facilitated acetone adsorption by ZIF-8-derived porous carbon. Materials 11, 159 (2018).

    Article  CAS  Google Scholar 

  108. C.Y. Lee: MOF-derived porous carbon materials for carbon dioxide capture. U.S. Patent No. 20180214849, A1, 2018: Available at: http://www.freepatentsonline.com/y2018/0214849.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris I. Kharisov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharissova, O.V., Kharisov, B.I. & González, L.T. Recent trends on density functional theory–assisted calculations of structures and properties of metal–organic frameworks and metal–organic frameworks-derived nanocarbons. Journal of Materials Research 35, 1424–1438 (2020). https://doi.org/10.1557/jmr.2020.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.109

Navigation