Skip to main content
Log in

Synthesis of YAG:Ce/ZnO core/shell nanoparticles with enhanced UV-visible and visible light photocatalytic activity and application for the antibiotic removal from aqueous media

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the first synthesis of highly homogenous Ce-doped YAG/ZnO core/shell nanoparticles (YAG:Ce/ZnO CSN) based on the hydrolysis/condensation of Zn(OAc)2 on the surface of YAG:Ce nanoparticles (NPs). Results show that YAG:Ce NPs of about 100 nm diameter are homogenously surrounded by a multilayer of highly crystallized ZnO nanocrystals (ZnO NCs) of 10–15 nm diameter with a core/shell structure. The as-prepared nanostructures have been used in the photocatalytic degradation of sulfathiazole (STZ), which is a molecule widely used as antibiotic, under UV-vis and visible light. The effect of YAG:Ce/ZnO weight ratio and YAG:Ce particle size on the photocatalytic efficiency of YAG:Ce/ZnO core/shell structures has been studied. The YAG:Ce/ZnO weight ratio of 1/1 was found to yield the optimal photocatalytic activity. Results also showed that YAG:Ce/ZnO CSN with 100 nm core size exhibited much higher photocatalytic activity compared to YAG:Ce/ZnO CSN with micro-sized YAG;Ce core. The recyclability of YAG:Ce/ZnO CSN photocatalyst was also demonstrated over at least 10 photocatalytic degradation cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Similar content being viewed by others

References

  1. K. Kummerer: Pharmaceuticals in the environment, Sources, fate, effects and risks. In Pharmaceuticals in the Environment—Scope of the Book and Introduction, K. Klaus, ed. (Springer-Verlag, Heidelberg, 2001); ch. 1, pp. 3–11.

    Chapter  Google Scholar 

  2. K. Kummerer: Antibiotics in the aquatic environment—A review—Part I. Chemosphere 75, 417 (2009).

    Article  CAS  Google Scholar 

  3. P. Sukul and M. Spitteler: Sulfonamides in the environment as veterinary drugs. Environ. Contam. Toxicol. 187, 67 (2006).

    CAS  Google Scholar 

  4. W. Baran, J. Sochacka, and W. Wardas: Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere 65, 1295 (2006).

    Article  CAS  Google Scholar 

  5. W. Baran, E. Adamek, J. Ziemiańska, and A. Sobczak: Effects of the presence of sulfonamides in the environment and their influence on human health. J. Hazard. Mater. 196, 1 (2011).

    Article  CAS  Google Scholar 

  6. C. Holtslander: Environmental contamination of ecosystems from antibiotic use in livestock production. Petition addressed to the auditor general of Canada. Available at: http://www.oag-bvg.gc.ca/internet/English/pet_190_e_28926.html (accessed October 11, 2018).

  7. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  8. X. Jiang, Y. Ma, C. Zhao, Y. Chen, M. Cui, J. Yu, and Y. He: Synthesis of flower-like AgI/Bi5O7I hybrid photocatalysts with enhanced photocatalytic activity in rhodamine B degradation. J. Mater. Res. 33, 2385 (2018).

    Article  CAS  Google Scholar 

  9. M. Wang, Z. Peng, H. Li, Z. Zhao, and X. Fu: C fibers@MoO2 nanoparticles core–shell composite: Highly efficient solar-driven photocatalyst. J. Mater. Res. 33, 685 (2018).

    Article  CAS  Google Scholar 

  10. F. Zhang, L. Wang, M. Xiao, F. Liu, X. Xu, and E. Du: Construction of direct solid-state Z-scheme g-C3N4/BiOI with improved photocatalytic activity for microcystin-LR degradation. J. Mater. Res. 33, 201 (2018).

    Article  CAS  Google Scholar 

  11. H. Li, H. Zhu, M. Wang, X. Min, M. Fang, Z. Huang, and X. Wu: A new Ag/Bi7Ta3O18 plasmonic photocatalyst with a visible-light-driven photocatalytic activity. J. Mater. Res. 32, 3650 (2017).

    Article  CAS  Google Scholar 

  12. D. Xu, W. Shi, C. Xu, S. Yang, H. Bai, C. Song, and B. Chen: Hydrothermal synthesis of 3D Ba5Ta4O15 flower-like microsphere photocatalyst with high photocatalytic properties. J. Mater. Res. 31, 2640 (2016).

    Article  CAS  Google Scholar 

  13. Z. Shen, Z. Zhao, J. Qian, Z. Peng, and X. Fu: Synthesis of WO3−x nanomaterials with controlled morphology and composition for highly efficient photocatalysis. J. Mater. Res. 31, 1065 (2016).

    Article  CAS  Google Scholar 

  14. Y. Wang, T. Liu, Q. Huang, C. Wu, and D. Shan: Synthesis and their photocatalytic properties of Ni-doped ZnO hollow microspheres. J. Mater. Res. 31, 2317 (2016).

    Article  CAS  Google Scholar 

  15. J. Qian, Z. Zhao, Z. Shen, G. Zhang, Z. Peng, and X. Fu: A large scale of CuS nano-networks: Catalyst-free morphologically controllable growth and their application as efficient photocatalysts. J. Mater. Res. 30, 3746 (2015).

    Article  CAS  Google Scholar 

  16. S. Challagulla and S. Roy: The role of fuel to oxidizer ratio in solution combustion synthesis of TiO2 and its influence on photocatalysis. J. Mater. Res. 32, 2764 (2017).

    Article  CAS  Google Scholar 

  17. S. Li, Q. Tao, D. Li, K. Liu, and Q. Zhang: Photocatalytic growth and plasmonic properties of Ag nanoparticles on TiO2 films. J. Mater. Res. 30, 304 (2015).

    Article  CAS  Google Scholar 

  18. F. Li, T. Han, H. Wang, X. Zheng, J. Wan, and B. Ni: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).

    Article  CAS  Google Scholar 

  19. S. Atla, C. Chen, C. Chen, S. Shih, P. Lin, P. Chung, and Y. Chang: Foam fractionation of ZnO crystal growth and its photocatalysis of the degradation of methylene blue. J. Mater. Res. 27, 2503 (2012).

    Article  CAS  Google Scholar 

  20. W. Zhang, C. Wang, X. Liu, and J. Li: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).

    Article  CAS  Google Scholar 

  21. D. Jassby, J.F. Budarz, and M. Wiesner: Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environ. Sci. Technol. 46, 6934 (2012).

    Article  CAS  Google Scholar 

  22. Y. Hong, C. Tian, B. Jiang, A. Wu, Q. Zhang, G. Tian, and H. Fu: Facile synthesis of sheet-like ZnO assembly composed of small ZnO particles for highly efficient photocatalysis. J. Mater. Chem. A 1, 5700 (2013).

    Article  CAS  Google Scholar 

  23. R.J. Barnes, R. Molina, J. Xu, P.J. Dobson, and I.P. Thompson: Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria. J. Nanopart. Res. 15, 1432 (2013).

    Article  CAS  Google Scholar 

  24. K. Rekha, N. Nirmala, M.G. Nair, and A. Anukaliani: Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys. B 405, 3180 (2010).

    Article  CAS  Google Scholar 

  25. B. Chouchene, T. Ben Chaabane, L. Balan, E. Girot, K. Mozet, G. Medjahdi, and R. Schneider: High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis. Beilstein J. Nanotechnol. 7, 1338 (2016).

    Article  CAS  Google Scholar 

  26. S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, and J. Sun: Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review. RSC Adv. 5, 14610 (2015).

    Article  CAS  Google Scholar 

  27. R. Ullah and J. Dutta: Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater. 156, 194 (2008).

    Article  CAS  Google Scholar 

  28. C.A.K. Gouvêa, F. Wypych, S.G. Moraes, N. Durán, and S. Peralta-Zamora: Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent by Ag-doped ZnO. Chemosphere 40, 427 (2000).

    Article  Google Scholar 

  29. M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, and Z. Hong: Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Curr. Appl. Phys. 13, 697 (2013).

    Article  Google Scholar 

  30. S. Liu, C. Li, J. Yu, and Q. Xiang: Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 13, 2533 (2011).

    Article  CAS  Google Scholar 

  31. K.C. Barick, S. Singh, M. Aslam, and D. Bahadur: Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Microporous Mesoporous Mater. 134, 195 (2010).

    Article  CAS  Google Scholar 

  32. F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M. Ben Said, A. Ghrabi, and R. Schneider: Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis. Mater. Des. 101, 309 (2016).

    Article  CAS  Google Scholar 

  33. O. Yayapao, T. Thongtem, A. Phuruangrat, and S. Thongtem: Synthesis and characterization of highly efficient Gd doped ZnO photocatalyst irradiated with ultraviolet and visible radiations. Mater. Sci. Semicond. Process. 39, 786 (2015).

    Article  CAS  Google Scholar 

  34. G. Yang, Q. Liu, Y. Fu, H. Ma, C. Ma, X. Dong, X. Zhang, and X. Zhang: Improved photocatalytic reactivity of ZnO photocatalysts decorated with Ni and their magnetic recoverability. J. Mater. Res. 30, 1902 (2015).

    Article  CAS  Google Scholar 

  35. N. Wada, Y. Yokomizo, C. Yogi, M. Katayama, A. Tanaka, K. Kojima, and K. Ozutsumi: Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis. J. Mater. Res. 33, 467 (2018).

    Article  CAS  Google Scholar 

  36. C. Li, Z. Zhao, L.H. Shindume, H. Huang, and Z. Peng: Enhanced visible photocatalytic activity of nitrogen doped single-crystal-like TiO2 by synergistic treatment with urea and mixed nitrates. J. Mater. Res. 32, 737 (2017).

    Article  CAS  Google Scholar 

  37. Y. Yan, T. Chen, Y. Zou, and Y. Wang: Bio-templated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).

    Article  CAS  Google Scholar 

  38. D. Bora: The photocathodic behavior of hierarchical ZnO/hematite hetero nanoarchitectures. J. Mater. Res. 31, 1554 (2016).

    Article  CAS  Google Scholar 

  39. R. Vogel, P. Hoyer, and H. Weller: Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 98, 3183 (1994).

    Article  CAS  Google Scholar 

  40. F. Achouri, S. Corbel, A. Aboulaich, L. Balan, A. Ghrabi, M. BenSaid, and R. Schneider: Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures. J. Phys. Chem. Solids 75, 1081 (2014).

    Article  CAS  Google Scholar 

  41. D. Li, X. Jiang, Y. Zhang, B. Zhang, and C. Pan: A novel route to ZnO/TiO2 heterojunction composite fibers. J. Mater. Res. 28, 507 (2013).

    Article  CAS  Google Scholar 

  42. S. Khanchandani, S. Kundu, A. Patra, and A.K. Ganguli: Band gap tuning of ZnO/In2S3 core/shell nanorod arrays for enhanced visible-light-driven photocatalysis. J. Phys. Chem. C 117, 5558 (2013).

    Article  CAS  Google Scholar 

  43. X. Liu, H. Chu, J. Li, L. Niu, C. Li, H. Li, L. Pan, and C.Q. Sun: Light converting phosphor-based photocatalytic composites. Catal. Sci. Technol. 5, 4727 (2015).

    Article  CAS  Google Scholar 

  44. J. Wang, Y.P. Xie, Z.H. Zhang, J. Li, X. Chen, L. Zhang, R. Xu, and X.D. Zhang: Photocatalytic degradation of organic dyes with Er3+:YAlO3/ZnO composite under solar light. Sol. Energy Mater. Sol. Cells 93, 355 (2009).

    Article  CAS  Google Scholar 

  45. H. Chu, X.J. Liu, J. Liu, W. Lei, J. Li, T. Wu, P. Li, H. Li, and L. Pan: Down-conversion phosphors as noble-metal-free co-catalyst in ZnO for efficient visible light photocatalysis. Appl. Surf. Sci. 391, 468 (2017).

    Article  CAS  Google Scholar 

  46. X. Liu, L. Pan, J. Li, K. Yu, Z. Sun, and C.Q. Sun: Light down-converting characteristics of ZnO–Y2O2S:Eu3+ for visible light photocatalysis. J. Colloid Interface Sci. 404, 150 (2013).

    Article  CAS  Google Scholar 

  47. X. Liu, X. Wang, H. Li, J. Li, L. Pan, J. Zhang, G. Min, Z. Sun, and C. Sun: Enhanced visible light photocatalytic activity of ZnO doped with down-conversion NaSrBO3:Tb3+ phosphors. Dalton Trans. 44, 97 (2015).

    Article  CAS  Google Scholar 

  48. L. Zammouri, A. Aboulaich, B. Capoen, M. Bouazaoui, M. Sarakha, M. Stitou, and R. Mahiou: Enhancement under UV-visible and visible light of the ZnO photocatalytic activity for the antibiotic removal from aqueous media using Ce-doped Lu3Al5O12 nanoparticles. Mater. Res. Bull. 106, 162 (2018).

    Article  CAS  Google Scholar 

  49. C. Bohne, K. Faulhaber, B. Giese, A. Hafner, A. Hofmann, H. Ihmels, A.K. Kohler, S. Pera, F. Schneider, and M.A-L. Sheepwash: Studies on the mechanism of the photo-induced DNA damage in the presence of acridizinium salts involvement of singlet oxygen and an unusual source for hydroxyl radicals. J. Am. Chem. Soc. 127, 76 (2005).

    Article  CAS  Google Scholar 

  50. B.I. Ipe, M. Lehning, and C.M. Niemeyer: On the generation of free radical species from quantum dots. Small 1, 706 (2005).

    Article  CAS  Google Scholar 

  51. S. Brunauer, P.H. Emmett, and E. Teller: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).

    Article  CAS  Google Scholar 

  52. E.P. Barrett, L.G. Joyner, and P.P. Halenda: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).

    Article  CAS  Google Scholar 

  53. B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction, 3rd ed. (Prentice Hall, New York, 2001); pp. 149–151.

    Google Scholar 

  54. G. Blasse and B.C. Grabmaier: Luminescent Materials (Springer-Verlag, Berlin, 1994); pp. 107–118.

    Book  Google Scholar 

  55. A. Aboulaich, C-M. Tilmaciu, C. Merlin, C. Mercier, H. Guilloteau, G. Medjahdi, and R. Schneider: Physicochemical properties and cellular toxicity of (poly)aminoalkoxysilanes-functionalized ZnO quantum dots. Nanotechnology 23, 335101 (2012).

    Article  CAS  Google Scholar 

  56. A. Aboulaich, J. Deschamps, R. Deloncle, A. Potdevin, B. Devouard, G. Chadeyron, and R. Mahiou: Rapid synthesis of Ce3+-doped YAG nanoparticles by a solvothermal method using metal carbonates as precursors. New J. Chem. 36, 2493 (2012).

    Article  CAS  Google Scholar 

  57. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985).

    Article  CAS  Google Scholar 

  58. G. Hitkari, S. Singh, and G. Pandey: Synthesis, characterization and visible light degradation of organic dye by chemically synthesized ZnO/γ-Fe3O4 nanocomposites. Int. J. Adv. Res. Sci. Eng. Technol. 4, 3960 (2017).

    Google Scholar 

  59. A-T.T. Do, H.T. Giang, T.T. Do, N.Q. Pham, and G.T. Ho: Effects of palladium on the optical and hydrogen sensing characteristics of Pd-doped ZnO nanoparticles. Beilstein J. Nanotechnol. 5, 1261 (2014).

    Article  CAS  Google Scholar 

  60. X.M. Fan, J.S. Lian, L. Zhao, and Y.H. Liu: Single violet luminescence emitted from ZnO films obtained by oxidation of Zn film on quartz glass. Appl. Surf. Sci. 252, 420 (2005).

    Article  CAS  Google Scholar 

  61. K. Reddy, A.J. Reddy, R.H. Krishna, B.M. Nagabhushana, and G.R. Gopal: Luminescence and spectroscopic investigations on Gd3+ doped ZnO nanophosphor. J. Asian Ceram. Soc. 5, 350 (2017).

    Article  Google Scholar 

  62. M. Velásquez, I.P. Santander, D.R. Contreras, J. Yáñez, C. Zaror, R.A. Salazar, M. Pérez-Moya, and H.D. Mansilla: Oxidative degradation of sulfathiazole by Fenton and photo-Fenton reactions. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 49, 661 (2014).

    Article  CAS  Google Scholar 

  63. D. He and N.N. Ekere: Effect of particle size ratio on the conducting percolation threshold of granular conductive-insulating composites. J. Phys. D: Appl. Phys. 37, 1848 (2004).

    Article  CAS  Google Scholar 

  64. C. Wang, M. Sawicki, S. Emani, C. Liu, and L.L. Shaw: Na3MnCO3PO4—A high capacity, multi-electron transfer redox cathode material for sodium ion batteries. Electrochim. Acta 161, 322 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Christelle Blavignac (CICS, Université d’Auvergne) for TEM observations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdelhay Aboulaich or Rachid Mahiou.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zammouri, L., Aboulaich, A., Capoen, B. et al. Synthesis of YAG:Ce/ZnO core/shell nanoparticles with enhanced UV-visible and visible light photocatalytic activity and application for the antibiotic removal from aqueous media. Journal of Materials Research 34, 1318–1330 (2019). https://doi.org/10.1557/jmr.2019.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.25

Navigation