Skip to main content
Log in

Synthesis, crystal structure, photoluminescence, and electroluminescence properties of a new compound containing diphenylmethylene, carbazole, and malononitrile units

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, a new phenylethylene derivative, named 2-((3,5-di(9H-carbazol-9-yl)phenyl)(p-tolyl)methylene)malononitrile (DCPTMM), is synthesized and characterized by 1H NMR, 13C NMR spectroscopies, mass spectrum, and X-ray crystallography. Its photophysical properties are systematically studied and the result illustrates that DCPTMM shows aggregation-induced emission (AIE). The X-ray single crystal diffraction shows that the individual structure of crystals is monoclinic system with space group symbol P21/c and presents a twisted propeller-type structure as well as the packing structure of crystals has multiple types of hydrogen bonds (C–H⋯π and C–H⋯N) formed between adjacent molecules, and there is no π–π interaction between the aromatic rings, which is the main reason for the formation of AIE. Nondoped OLED fabricated with DCPTMM as light emitting layer emits greenish yellow light with a maximum emission peak of 554 nm and has relatively good performance with a maximum current efficiency of 5.53 cd/A and a maximum brightness of 6936 cd/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. C.W. Tang and S.A. VanSlyke: Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    CAS  Google Scholar 

  2. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito: Electroluminescence in organic films with three-layer structure. J. Appl. Phys. 27, L269–L271 (1988).

    CAS  Google Scholar 

  3. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, and A.B. Holmes: Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    CAS  Google Scholar 

  4. X.T. Tao, H. Suzuki, T. Wada, H. Suzuki, and S. Miyata: Lithium tetra-(8-hydroxy-quinolinato) boron for blue electroluminescent application. Appl. Phys. Lett. 75, 1655–1657 (1999).

    CAS  Google Scholar 

  5. L.X. Xiao, Z.J. Chen, A.R. Brown, Q. Bo, J.X. Luo, S. Kong, Q.H. Gong, and J.J. Kiod: Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv. Mater. 23, 926–952 (2011).

    CAS  Google Scholar 

  6. J. Li, C. Ma, J. Tang, C.S. Lee, and S. Lee: Novel starburst molecule as a hole injecting and transporting material for organic light-emitting devices. Chem. Mater. 17, 615–619 (2005).

    CAS  Google Scholar 

  7. J. Li, D. Liu, Y. Li, C.S. Lee, H. Kwong, and S. Lee: A high Tg carbazole-based hole-transporting material for organic light-emitting devices. Chem. Mater. 17, 1208–1212 (2005).

    CAS  Google Scholar 

  8. M.T. Bernius, M. Inbasekaran, J.J. O’Brien, and W. Wu: Progress with light-emitting polymers. Adv. Mater. 12, 1737–1749 (2000).

    CAS  Google Scholar 

  9. S.W. Thomas, III, G.D. Joly, and T.M. Swager: Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107, 1339–1386 (2007).

    CAS  Google Scholar 

  10. C-L. Chiang, S-M. Tseng, C-T. Chen, C-P. Hsu, and C-F. Shu: Influence of molecular dipoles on the photoluminescence and electr-luminescence of dipolar spirobifluorenes. Adv. Funct. Mater. 18, 248–257 (2008).

    CAS  Google Scholar 

  11. J. Wang, Y. Zhao, C. Dou, H. Sun, P. Xu, K. Ye, J. Zhang, S. Jiang, F. Li, and Y. Wang: Alkyl and dendron substituted quinacridones: Synthesis, structures, and luminescent properties. J. Phys. Chem. B 111, 5082–5089 (2007).

    CAS  Google Scholar 

  12. A.C. Grimsdale, K.L. Chan, R.E. Martin, P.G. Jokisz, and A.B. Holmes: Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 109, 897–1091 (2009).

    CAS  Google Scholar 

  13. J.Z. Liu, J.W.Y. Lam, and B.Z. Tang: Acetylenic polymers: Syntheses, structures, and functions. Chem. Rev. 109, 5799–5867 (2009).

    CAS  Google Scholar 

  14. J.D. Luo, Z.L. Xie, J.W.Y. Lam, L. Cheng, H.Y. Chen, C.F. Qiu, H.S. Kwok, X.W. Zhan, Y.Q. Liu, D.B. Zhu, and B.Z. Tang: Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 18, 1740–1741 (2001).

    Google Scholar 

  15. J. Chen, B. Xu, X.Y. Ouyang, B.Z. Tang, and Y. Cao: Aggregation-induced emission of cis,cis-1,2,3,4-tetraphenylbutadiene from restricted intramolecular rotation. J. Phys. Chem. A 108, 7522–7526 (2004).

    CAS  Google Scholar 

  16. N.L.C. Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J.W.Y. Lam, and B.Z. Tang: Restriction of intramolecular motions: The general mechanism behind aggregation-induced emission. Chem.–Eur. J. 20, 15349–15353 (2014).

    CAS  Google Scholar 

  17. Y. Hong, J.W.Y. Lam, and B.Z. Tang: Aggregation-induced emission. Chem. Soc. Rev. 40, 5361e5388 (2011).

    Google Scholar 

  18. J. Mei, Y. Hong, J.W.Y. Lam, A. Qin, and B.Z. Tang: Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 26, 5429–5459 (2014).

    CAS  Google Scholar 

  19. H. Wang, E. Zhao, J.W.Y. Lam, and B.Z. Tang: AIE luminogens: Emission brightened by aggregation. Mater. Today 7, 365–377 (2015).

    Google Scholar 

  20. Z.J. Zhao, B.R. He, and B.Z. Tang: Aggregation-induced emission of siloles. Chem. Mater. 6, 5347–5365 (2015).

    CAS  Google Scholar 

  21. J. Liang, B. Liu, and B.Z. Tang: Specific light-up bioprobes based on AIEgen conjugates. Chem. Soc. Rev. 44, 2798–2811 (2015).

    CAS  Google Scholar 

  22. T.K. Kwok, C.W.T. Leung, W.T. Chris, J.W.Y. Lam, and B.Z. Tang: Biosensing by luminogens with aggregation-induced emission characteristics. Chem. Soc. Rev. 44, 4228–4238 (2015).

    CAS  Google Scholar 

  23. J. Mei, Y.N. Hong, J.W.Y. Lam, A.J. Qin, Y.H. Tang, and B.Z. Tang: Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 26, 5429–5479 (2014).

    CAS  Google Scholar 

  24. G.R. Hu, N.L.C. Lelson, and B.Z. Tang: AIE macromolecules: Syntheses, structures and functionalities. Chem. Soc. Rev. 43, 4494–4562 (2014).

    CAS  Google Scholar 

  25. Y.Q. Dong, C.Y. Li, W.J. Zhao, Y.P. Dong, and B.Z. Tang: Stimulus responsive luminescent materials: Crystallization-induced emission enhancement. J. Mol. Eng. Mater. 1, 1340010/1–1340010/13 (2013).

    CAS  Google Scholar 

  26. D. Ding, K. Li, B. Liu, and B.Z. Tang: Bioprobes based on AIE fluorogens. Acc. Chem. Res. 46, 2441–2453 (2013).

    CAS  Google Scholar 

  27. Z.J. Zhao, J.W.Y. Lam, and B.Z. Tang: Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter 9, 4564–4579 (2013).

    CAS  Google Scholar 

  28. Z.J. Zhao, J.W.Y. Lam, and B.Z. Tang: Tetraphenylethene: A versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J. Mater. Chem. 22, 23726–23740 (2012).

    CAS  Google Scholar 

  29. A.J. Qin, J.W.Y. Lam, and B.Z. Tang: Luminogenic polymers with aggregation-induced emission characteristics. Prog. Polym. Sci. 37, 182–209 (2012).

    CAS  Google Scholar 

  30. Y.N. Hong, J.W.Y. Lam, and B.Z. Tang: Aggregation-induced emission. Chem. Soc. Rev. 40, 5361–5388 (2011).

    CAS  Google Scholar 

  31. Y.N. Hong, J.W.Y. Lam, and B.Z. Tang: Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 29, 4332–4353 (2009).

    Google Scholar 

  32. J. Huang, N. Sun, P.Y. Chen, R.L. Tang, Q.Q. Li, D.G. Ma, and Z. Li: Largely blue-shifted emission through minor structural modifications: Molecular design, synthesis, aggregation-induced emission and deep-blue OLED application. Chem. Commun. 50, 2136–2138 (2014).

    CAS  Google Scholar 

  33. J. Huang, N. Sun, J. Yang, R.L. Tang, Q.Q. Li, D.G. Ma, and Z. Li: Blue aggregation-induced emission luminogens: High external quantum efficiencies up to 3.99% in LED device, and restriction of the conjugation length through rational molecular design. Adv. Funct. Mater. 24, 7645–7654 (2014).

    CAS  Google Scholar 

  34. J. Yang, N. Sun, J. Huang, Q.Q. Li, Q. Peng, X. Tang, Y.Q. Dong, D.G. Ma, and Z. Li: New AIEgens containing tetraphenylethene and silole moieties: Tunable intramolecular conjugation, aggregation-induced emission characteristics and good device performance. J. Mater. Chem. C 3, 2624–2634 (2015).

    CAS  Google Scholar 

  35. Z.Y. Yang, Z.G. Chi, T. Yu, X.Q. Zhang, M.N. Chen, B.J. Xu, S.W. Liu, Y. Zhang, and J.R. Xu: Triphenylethylene carbazole derivatives as a new class of AIE materials with strong blue light emission and high glass transition temperature. J. Mater. Chem. 19, 5541–5546 (2009).

    CAS  Google Scholar 

  36. H.Y. Li, Z.G. Chi, B.J. Xu, X.Q. Zhang, Z.Y. Yang, X.F. Li, S.W. Liu, Y. Zhang, and J.R. Xu: New aggregation-induced emission enhancement materials combined triarylamine and dicarbazolyl triphenylethylene moieties. J. Mater. Chem. 20, 6103–6110 (2010).

    CAS  Google Scholar 

  37. H.Y. Li, Z.G. Chi, X.Q. Zhang, B.J. Xu, S.W. Liu, Y. Zhang, and J.R. Xu: New thermally stable aggregation-induced emission enhancement compounds for non-doped red organic light-emitting diodes. Chem. Commun. 47, 11254–11273 (2011).

    Google Scholar 

  38. X.Y. Tang, L. Yao, H. Liu, F.Z. Shen, S.T. Zhang, H.H. Zhang, P. Lu, and Y.G. Ma: An efficient AIE-active blue-emitting molecule by incorporating multifunctional groups into tetraphenylsilane. Chem 20, 7589–7592 (2014).

    CAS  Google Scholar 

  39. H.P. Shi, D.H. Xin, X.G. Gu, P.F. Zhang, H.R. Peng, S.M. Chen, G.W. Lin, Z.J. Zha, and B.Z. Tang: The synthesis of novel AIE emitters with the triphenylethene-carbazole skeleton and para-/meta-substituted arylboron groups and their application in efficient non-doped OLEDs. J. Mater. Chem. C 4, 1228–1237 (2016).

    CAS  Google Scholar 

  40. X.Q. Dong, M. Li, H.P. Shi, F.Q. Cheng, J. Roose, and B.Z. Tang: Synthesis, aggregation-induced emission, and electroluminescence of a new compound based on tetraphenylethene, carbazole, and dimesitylboron moieties. Tetrahedron 72, 2213–2218 (2016).

    CAS  Google Scholar 

  41. H.P. Shi, X.L. Zhang, C. Gui, S.J. Wang, L. Fang, Z.J. Zhao, S.M. Chen, and B.Z. Tang: Synthesis, aggregation-induced emission and electroluminescence properties of three new phenylethylene derivatives comprising carbazole and (dimesitylboranyl)phenyl groups. J. Mater. Chem. C 5, 11741–11750 (2017).

    CAS  Google Scholar 

  42. X.Q. Dong, S.J. Wang, C. Gui, H.P. Shi, F.Q. Cheng, and B.Z. Tang: Synthesis, aggregation-induced emission and thermally activated delayed fluorescence properties of two new compounds based on phenylethene, carbazole and 9,9′,10,10′-tetraoxidethianthrene. Tetrahedron 74, 497–505 (2018).

    CAS  Google Scholar 

  43. H.P. Shi, S.J. Wang, L.Y. Qin, C. Gui, X.L. Zhang, L. Fang, S.M. Chen, and B.Z. Tang: Construction of two AIE luminogens comprised of a tetra-/tri-phenylethene core and carbazole units for non-doped organic light-emitting diodes. Dyes Pigm. 149, 323–330 (2018).

    CAS  Google Scholar 

  44. L. Chen, G.W. Lin, H.R. Peng, H. Nie, Z.Y. Zhuang, P.C. Shen, S.Y. Ding, D.J. Huang, R.R. Hu, S.M. Chen, F. Huang, A.J. Qin, Z.J. Zhao, and B.Z. Tang: Dimesitylboryl-functionalized tetraphenylethene derivatives: Efficient solid-state luminescent materials with enhanced electron-transporting ability for nondoped OLEDs. J. Mater. Chem. C 4, 5241–5247 (2016).

    CAS  Google Scholar 

  45. Y.H. Li, Z.Y. Zhuang, G.W. Lin, Z.M. Wang, P.C. Shen, Y. Xiong, B.H. Wang, S.M. Chen, Z.J. Zhao, and B.Z. Tang: A new blue AIEgen based on tetraphenylethene with multiple potential applications in fluorine ion sensors, mechanochromism, and organic light-emitting diodes. New J. Chem. 42, 4089–4094 (2018).

    CAS  Google Scholar 

  46. H.P. Shi, M. Li, D.H. Xin, L. Fang, J. Roose, H.R. Peng, S.M. Chen, and B.Z. Tang: Two novel phenylethene-carbazole derivatives containing dimesitylboron groups: Aggregation-induced emission and electroluminescence properties. Dyes Pigm. 128, 304–313 (2016).

    CAS  Google Scholar 

  47. G-F. Zhang, Z-Q. Chen, M.P. Aldred, Z. Hu, T. Chen, Z. Huang, X. Meng, M-Q. Zhu: Direct validation of the restriction of intramolecular rotation hypothesis via the synthesis of novel ortho-methyl substituted tetraphenylethenes and their application in cell imaging. Chem. Commun. 50, 12058–12060 (2014).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 21875130) and Innovation and Entrepreneurship Training Program Project for College Students of University of Electronic Science and Technology of China (Nos. 201810614071 and 201810614770). The authors express their sincere thanks to the Advanced Computing Facilities of the Supercomputing Center of Computer Network Information Center of Chinese Academy of Sciences for all the theoretical calculations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junsheng Yu, Heping Shi or Ben Zhong Tang.

Supplementary Material

43578_2019_34173000_MOESM1_ESM.doc

Synthesis, crystal structure, photoluminescence and electroluminescence properties of a new compound containing diphenylmethylene, carbazole and malononitrile units (approximately 17.8 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Zhang, D., Huo, J. et al. Synthesis, crystal structure, photoluminescence, and electroluminescence properties of a new compound containing diphenylmethylene, carbazole, and malononitrile units. Journal of Materials Research 34, 3000–3010 (2019). https://doi.org/10.1557/jmr.2019.173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.173

Navigation