Skip to main content
Log in

Relationship between the glutathione-responsive degradability of thiol-organosilica nanoparticles and the chemical structures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Stimuli-responsive degradable silica nanoparticles (NPs) are active topics of nanomaterial research, because they are expected to be low health-risk nanocarriers capable of controlled release of drugs. Among various stimuli-responsive silica NPs, disulfide bond-containing NPs show degradability by glutathione reduced form (GSH). Here, we synthesized and characterized three kinds of thiol-organosilica NPs made from 3-mercaptopropyltrimethoxysilane (MPMS) and 3-mercaptopropyl(dimethoxy)methylsilane (MPDMS). MPMS NPs, MPDMS NPs, and MPMS–MPDMS hybrid NPs revealed that the abundance ratio of disulfide bonds to thiols increased with the increase in content rate of MPDMS in thiol-organosilica NPs. We also revealed that thiol-organosilica NPs, which have disulfide bonds, are GSH-responsive degradable silica NPs using an electron microscopy and Ellman’s tests. Furthermore, we synthesized fluorescent MPMS–MPDMS NPs, including rhodamine B, and demonstrated the GSH-responsive release of dye from the NPs. These experiments indicate the potential of thiol-organosilica NPs, which have disulfide bonds as a GSH-responsive drug carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. J.E. Gagner, S. Shrivastava, X. Qian, J.S. Dordick, and R.W. Siegel Engineering nanomaterials for biomedical applications requires understanding the nano-bio interface: A perspective. J. Phys. Chem. Lett. 3, 3149 (2012).

    Article  CAS  Google Scholar 

  2. L-C. Cheng, X. Jiang, J. Wang, C. Chen, and R-S. Liu Nano-bio effects: Interaction of nanomaterials with cells. Nanoscale 5, 3547 (2013).

    Article  CAS  Google Scholar 

  3. A. Bitar, N.M. Ahmad, H. Fessi, and A. Elaissari Silica-based nanoparticles for biomedical applications. Drug Discov. Today 17, 1147 (2012).

    Article  CAS  Google Scholar 

  4. L. Tang and J. Cheng Nonporous silica nanoparticles for nanomedicine application. Nano Today 8, 290 (2013).

    Article  CAS  Google Scholar 

  5. Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang, and S. Wang Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 11, 313 (2015).

    Article  CAS  Google Scholar 

  6. P.M. Tiwari, K. Vig, V.A. Dennis, and S.R. Singh Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1, 31 (2011).

    Article  CAS  Google Scholar 

  7. A. Ali, H. Zafar, M. Zia, I.U. Haq, A.R. Phull, J.S. Ali, and A. Hussain Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49 (2016).

    Article  CAS  Google Scholar 

  8. Y. Zhang, T.R. Nayak, H. Hong, and W. Cai Biomedical applications of zinc oxide nanomaterials. Curr. Mol. Med. 13, 1633 (2013).

    Article  CAS  Google Scholar 

  9. D. Chimene, D.L. Alge, and A.K. Gaharwar Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater. 27, 7261 (2015).

    Article  CAS  Google Scholar 

  10. N.J. Halas Nanoscience under glass: The versatile chemistry of silica nanostructures. ACS Nano 2, 179 (2008).

    Article  CAS  Google Scholar 

  11. H. Nishimori, M. Kondoh, K. Isoda, S. Tsunoda, and Y. Tsutsumi Histological analysis of 70-nm silica particles-induced chronic toxicity in mice. Eur. J. Pharm. Biopharm. 72, 626 (2009).

    Article  CAS  Google Scholar 

  12. G. Xie, J. Sun, G. Zhong, L. Shi, and D. Zhang Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch. Toxicol. 84, 183 (2010).

    Article  CAS  Google Scholar 

  13. Y. Yu, J. Duan, Y. Li, Y. Li, L. Jing, M. Yang, J. Wang, and Z. Sun Silica nanoparticles induce liver fibrosis via TGF-β1/Smad3 pathway in ICR mice. Int. J. Nanomed. 12, 6045 (2017).

    Article  CAS  Google Scholar 

  14. T. Liu, L. Li, X. Teng, X. Huang, H. Liu, D. Chen, J. Ren, J. He, and F. Tang Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials 32, 1657 (2011).

    Article  CAS  Google Scholar 

  15. T. Lin, L. Li, C. Fu, H. Liu, D. Chen, and F. Tang Pathological mechanisms of liver injury caused by continuous intraperitoneal injection of silica nanoparticles. Biomaterials 33, 2399 (2012).

    Article  CAS  Google Scholar 

  16. H. Mekaru, J. Lu, and F. Tamanoi Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv. Drug Deliv. Rev. 95, 40 (2015).

    Article  CAS  Google Scholar 

  17. A.F. Moreira, D.R. Dias, and I.J. Correia Stimuli-responsive mesoporous silica nanoparticles for cancer therapy. Microporous Mesoporous Mater. 236, 141 (2016).

    Article  CAS  Google Scholar 

  18. M. Karimi, P.S. Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, and M.R. Hamblin Smart nanostructures for cargo delivery: Uncaging and activating by light. J. Am. Chem. Soc. 139, 4584 (2017).

    Article  CAS  Google Scholar 

  19. A. Baeza, E. Guisasola, E. Ruiz-Hernández, and M. Vallet-Regí Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater. 24, 517 (2012).

    Article  CAS  Google Scholar 

  20. P. Saint-Cricq, S. Deshayes, J.I. Zink, and A.M. Kasko Magnetic field activated drug delivery using thermodegradable azo-functionalised PEG-coated core–shell mesoporous silica nanoparticles. Nanoscale 7, 13168 (2015).

    Article  CAS  Google Scholar 

  21. C-H. Lee, S-H. Cheng, I-P. Huang, J.S. Souris, C-S. Yang, C-Y. Mou, and L-W. Lo Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew. Chem., Int. Ed. 49, 8214 (2010).

    Article  CAS  Google Scholar 

  22. H. Meng, M. Xue, T. Xia, Y-L. Zhao, F. Tamanoi, J.F. Stoddart, J.I. Zink, and A.E. Nel Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. 132, 12690 (2010).

    Article  CAS  Google Scholar 

  23. Y-L. Zhao, Z. Li, S. Kabehie, Y.Y. Botros, J.F. Stoddart, and J.I. Zink pH-operated nanopistons on the surfaces of mesoporous silica nanoparticle. J. Am. Chem. Soc. 132, 13016 (2010).

    Article  CAS  Google Scholar 

  24. S. Zhou, D. Wu, X. Yin, X. Jin, X. Zhang, S. Zheng, C. Wang, and Y. Liu Intracellular pH-responsive and rituximab-conjugated mesoporous silica nanoparticles for targeted drug delivery to lymphoma B cells. J. Exp. Clin. Canc. Res. 36, 24 (2017).

    Article  CAS  Google Scholar 

  25. S. Giri, B.G. Trewyn, M.P. Stellmaker, and V.S-Y. Li Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem., Int. Ed. 44, 5038 (2005).

    Article  CAS  Google Scholar 

  26. Y. Cui, H. Dong, X. Cai, D. Wang, and Y. Li Mesoporous silica nanoparticles capped with disulfide-linked PEG gatekeepers for glutathione-mediated controlled release. ACS Appl. Mater. Interfaces 4, 3177 (2012).

    Article  CAS  Google Scholar 

  27. Q. Zhang, F. Liu, K.T. Nguyen, X. Ma, X. Wang, B. Xing, and Y. Zhao Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery. Adv. Funct. Mater. 22, 5144 (2012).

    Article  CAS  Google Scholar 

  28. Y. Yang, J. Wan, Y. Niu, Z. Gu, J. Zhang, M. Yu, and C. Yu Structure-dependent and glutathione-responsive biodegradable dendritic mesoporous organosilica nanoparticles for safe protein delivery. Chem. Mater. 28, 9008 (2016).

    Article  CAS  Google Scholar 

  29. E.A. Prasetyanto, A. Bertucci, D. Septiadi, R. Corradini, P. Castro-Hartmann, and L. De Cola Breakable hybrid organosilica nanoparticles for protein delivery. Angew. Chem., Int. Ed. 55, 3323 (2016).

    Article  CAS  Google Scholar 

  30. K. Hayashi, T. Maruhashi, M. Nakamura, W. Sakamoto, and T. Yogo One-pot synthesis of dual stimuli-responsive degradable hollow hybrid nanoparticles for image-guided trimodal therapy. Adv. Funct. Mater. 26, 8613 (2016).

    Article  CAS  Google Scholar 

  31. M. Zhou, X. Du, W. Li, X. Li, H. Huang, Q. Liao, B. Shi, X. Zhang, and M. Zhang One-pot synthesis of redox-triggered biodegradable hybrid nanocapsules with a disulfide-bridged silsesquioxane framework for promising drug delivery. J. Mater. Chem. B 5, 4455 (2017).

    Article  CAS  Google Scholar 

  32. L. Mondragón, N. Mas, V. Ferragud, C. de la Torre, A. Agostini, R. Martínez-Máñez, F. Sancenón, P. Amorós, E. Pérez-Payá, and M. Orzáez Enzyme-responsive intracellular-controlled release using silica mesoporous nanoparticles capped with ε-poly-L-lysine. Chem.–Eur. J. 20, 5271 (2014).

    Article  CAS  Google Scholar 

  33. J. Liu, B. Zhang, Z. Luo, X. Ding, J. Li, L. Dai, J. Zhou, X. Zhao, J. Ye, and K. Cai Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Nanoscale 7, 3614 (2015).

    Article  CAS  Google Scholar 

  34. S.H. van Rijt, D.A. Bölükbas, C. Argyo, S. Datz, M. Lindner, O. Eickelberg, M. Königshoff, T. Bein, and S. Meiners Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors. ACS Nano 9, 2377 (2015).

    Article  CAS  Google Scholar 

  35. M.L. Circu and T.Y. Aw Glutathione and apoptosis. Free Radic. Res. 42, 689 (2008).

    Article  CAS  Google Scholar 

  36. H.J. Forman, H. Zhang, and A. Rinna Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspect. Med. 30, 1 (2009).

    Article  CAS  Google Scholar 

  37. M. Nakamura and K. Ishimura One-pot synthesis and characterization of three kinds of thiol-organosilica nanoparticles. Langmuir 24, 5099 (2008).

    Article  CAS  Google Scholar 

  38. M. Nakamura, S. Ozaki, M. Abe, H. Doi, T. Matsumoto, and K. Ishimura Size-controlled synthesis, surface functionalization, and biological applications of thiol-organosilica particles. Colloids Surf., B 79, 19 (2010).

    Article  CAS  Google Scholar 

  39. T. Doura, F. Tamanoi, and M. Nakamura Miniaturization of thiol-organosilica nanoparticles induced by an anionic surfactant. J. Colloid Interface Sci. 526, 51 (2018).

    Article  CAS  Google Scholar 

  40. M. Nakamura, A. Awaad, K. Hayashi, K. Ochiai, and K. Ishimura Thiol-organosilica particles internally functionalized with propidium iodide as a multicolor fluorescence and X-ray computed tomography probe and application for non-invasive functional gastrointestinal tract imaging. Chem. Mater. 24, 3772 (2012).

    Article  CAS  Google Scholar 

  41. M. Nakamura, K. Hayashi, M. Nakano, T. Kanadani, K. Miyamoto, T. Kori, and K. Horikawa Identification of polyethylene glycol-resistant macrophages on stealth imaging in vitro using fluorescent organosilica nanoparticles. ACS Nano 9, 1058 (2015).

    Article  CAS  Google Scholar 

  42. M. Nakamura, K. Hayashi, H. Kubo, T. Kanadani, M. Harada, and T. Yogo Relaxometric property of organosilica nanoparticles internally functionalized with iron oxide and fluorescent dye for multimodal imaging. J. Colloid Interface Sci. 492, 127 (2017).

    Article  CAS  Google Scholar 

  43. M. Nakamura, K. Hayashi, H. Kubo, M. Harada, K. Izumi, Y. Tsuruo, and T. Yogo Mesoscopic multimodal imaging provides new insight to tumor tissue evaluation: An example of macrophage imaging of hepatic tumor using organosilica nanoparticles. Sci. Rep. 7, 3953 (2017).

    Article  CAS  Google Scholar 

  44. E. Blanco, H. Shen, and M. Ferrari Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941 (2015).

    Article  CAS  Google Scholar 

  45. S. Svenson Theranostics: Are we there yet? Mol. Pharm. 10, 848 (2013).

    Article  CAS  Google Scholar 

  46. G.S. Irmukhametova, G.A. Mun, and V.V. Khutoryanskiy Thiolated mucoadhesive and PEGylated nonmucoadhesive organosilica nanoparticles from 3-mercaptopropyltrimethoxysilane. Langmuir 27, 9551 (2011).

    Article  CAS  Google Scholar 

  47. G.S. Irmukhametova, B.J. Fraser, J.L. Keddie, G.A. Mun, and V.V. Khutoryanskiy Hydrogen-bonding-driven self-assembly of PEGylated organosilica nanoparticles with poly(acrylic acid) in aqueous solutions and in layer-by-layer deposition at solid surface. Langmuir 28, 299 (2012).

    Article  CAS  Google Scholar 

  48. J.H.A. Mahrooqi, E.A. Mun, A.C. Williams, and V.V. Khutoryanskiy Controlling the size of thiolated organosilica nanoparticles. Langmuir 34, 8347 (2018).

    Article  CAS  Google Scholar 

  49. E.D.H. Mansfield, K. Sillence, P. Hole, A.C. Williams, and V.V. Khutoryanskiy POZylation: A new approach to enhance nanoparticle diffusion through mucosal barriers. Nanoscale 7, 13671 (2015).

    Article  CAS  Google Scholar 

  50. E.D.H. Mansfield, V.R. de la Rosa, R.M. Kowalczyk, I. Grillo, R. Hoogenboom, K. Sillence, P. Hole, A.C. Williams, and V.V. Khutoryanskiy Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalized nanoparticles through a mucosal barrier. Biomater. Sci. 4, 1318 (2016).

    Article  CAS  Google Scholar 

  51. S. Quignard, S. Masse, G. Laurent, and T. Coradin Introduction of disulfide bridges within silica nanoparticles to control their intra-cellular degradation. Chem. Commun. 49, 3410 (2013).

    Article  CAS  Google Scholar 

  52. P. Bazylewski, R. Divigalpitiya, and G. Fanchini In situ Raman spectroscopy distinguishes between reversible and irreversible thiol modifications in L-cysteine. RSC Adv. 7, 2964 (2017).

    Article  CAS  Google Scholar 

  53. H.E. Van Wart and H.A. Scherag Agreement with the disulfide stretching frequency-conformation correlation of Sugeta, Go, and Miyazawa. Proc. Natl. Acad. Sci. U. S. A 83, 3064 (1986).

    Article  Google Scholar 

  54. A. Pawlukojć, J. Leciejewicz, A.J. Ramirez-Cuesta, and J. Nowicka-Scheibe L-Cysteine: Neutron spectroscopy, Raman, IR and ab initio study. Spectrochim. Acta, Part A 61, 2474 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by JSPS KAKENHI Grant Number JP16K18909 (T.D.), YU Project for Formation of the Core Research Center (T.D.), JSPS KAKENHI Grant Number JP16K01358 (M.N.), and the JSPS Bilateral Programs (M.N.). Assistance with electron microscopic analyses was provided by Dr. Koichi Udo and the Institute for Biomedical Research and Education, Yamaguchi University Science Research Center, Japan. Assistance with solid-state 13C NMR measurements was provided by Dr. Hirotaka Fujimori, Dr. Yoshiko Murakami, Mr. Ryota Hori, Mr. Yudai Arisuda, and Mr. Yosuke Fukuzawa of Yamaguchi University. Raman spectroscopic measurements were supported by Dr. Kenta Fujii and Dr. Yanko Todorov of Yamaguchi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihiro Nakamura.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doura, T., Nishio, T., Tamanoi, F. et al. Relationship between the glutathione-responsive degradability of thiol-organosilica nanoparticles and the chemical structures. Journal of Materials Research 34, 1266–1278 (2019). https://doi.org/10.1557/jmr.2018.501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.501

Navigation