Skip to main content

Advertisement

Log in

Processing and properties of highly porous Ti6Al4V mimicking human bones

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ti6Al4V alloy samples with large pores suitable for bone implants are fabricated by pressing and sintering. Ti6Al4V powder is mixed with different volume fractions of salt particles. The sintering behavior up to 1260 °C is studied by dilatometry and pore features are observed by scanning electron microscopy and X-ray microtomography. Sintered materials with a relative density between 0.26 and 0.97 are obtained. 3D image analysis proves that large pores form a connected network when the amount of salt is 20% and above. The Young’s modulus and the yield stress of sintered materials deduced from compression tests span over wide ranges of values, which are consistent with real bone data. A simple analytical model is proposed to estimate the relative density as a function of the fraction of salt. This model combined with classical Gibson and Ashby’s power equations for mechanical properties can predict the fraction of salt required to obtain prescribed properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.M. Dewidar, K.A. Khalil, and J.K. Lim: Processing and mechanical properties of porous 316L stainless steel for biomedical applications. Trans. Nonferrous Metals Soc. 17, 468 (2007).

    Article  Google Scholar 

  2. S. Bender, V. Chalivendra, N. Rahbar, and S. El Wakil: Mechanical characterization and modeling of graded porous stainless steel specimens for possible bone implant applications. Int. J. Eng. Sci. 53, 67 (2012).

    Article  CAS  Google Scholar 

  3. M. Eriksson, M. Andersson, E. Adolfsson, and E. Carlström: Titanium–hydroxyapatite composite biomaterial for dental implants. Powder Metall. 49, 70 (2006).

    Article  CAS  Google Scholar 

  4. H.J. Rack and J. Qazi: Titanium alloys for biomedical applications. Mater. Sci. Eng., C 26, 1269 (2006).

    Article  CAS  Google Scholar 

  5. Z. Oksiuta, J.R. Dabrowski, and A. Olszyna: Co–Cr–Mo-based composite reinforced with bioactive glass. J. Mater. Process. Technol. 209, 978 (2009).

    Article  CAS  Google Scholar 

  6. M. Dourandish, D. Godlinski, A. Simchi, and V. Firouzdor: Sintering of biocompatible P/M Co–Cr–Mo alloy (F-75) for fabrication of porosity-graded composite structures. Mater. Sci. Eng., A 472, 338 (2008).

    Article  CAS  Google Scholar 

  7. K. Crosby: Titanium–6Aluminum–4Vanadium for functionally graded orthopedic implant applications. Doct. Diss. 218, 1 (2013).

    Google Scholar 

  8. M. Long and H. Rack: Titanium alloys in total joint replacement—A materials science perspective. Biomaterials 19, 1621–1639 (1998).

    Article  CAS  Google Scholar 

  9. M. Bahraminasab, B.B. Sahari, K.L. Edwards, F. Farahmand, M. Arumugam, and T.S. Hong: Aseptic loosening of femoral components—A review of current and future trends in materials used. Mater. Des. 42, 459 (2012).

    Article  CAS  Google Scholar 

  10. M. Niinomi and M. Nakai: Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. 2011, 10 (2011).

    Article  CAS  Google Scholar 

  11. B.J. Moyen, P.J. Lahey, E.H. Weinberg, and W.H. Harris: Effects on intact femora of dogs of the application and removal of metal plates. A metabolic and structural study comparing stiffer and more flexible plates. J. Bone Jt. Surg., Am. 60A, 940 (1978).

    Article  Google Scholar 

  12. X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, and Y.M. Xie: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83, 127 (2016).

    Article  CAS  Google Scholar 

  13. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, 2nd ed., Vol. 175 (Cambridge University Press, Cambridge, United Kingdom, 1999).

    Google Scholar 

  14. H. Shen and L.C. Brinson: A numerical investigation of porous titanium as orthopedic implant material. Mech. Mater. 43, 420 (2011).

    Article  Google Scholar 

  15. V. Karageorgiou and D. Kaplan: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474 (2005).

    Article  CAS  Google Scholar 

  16. M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo, and T. Nakamura: Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials 26, 6014 (2005).

    Article  CAS  Google Scholar 

  17. I.H. Oh, N. Nomura, N. Masahashi, and S. Hanada: Mechanical properties of porous titanium compacts prepared by powder sintering. Scr. Mater. 49, 1197 (2003).

    Article  CAS  Google Scholar 

  18. Y. Chino and D.C. Dunand: Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105 (2008).

    Article  CAS  Google Scholar 

  19. F. Li, J. Li, T. Huang, H. Kou, and L. Zhou: Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications. J. Mech. Behav. Biomed. Mater. 65, 814 (2017).

    Article  CAS  Google Scholar 

  20. N.W. Hrabe, P. Heinl, B. Flinn, C. Körner, and R.K. Bordia: Compression-compression fatigue of selective electron beam melted cellular titanium (Ti–6Al–4V). J. Biomed. Mater. Res., Part B 99, 313 (2011).

    Article  CAS  Google Scholar 

  21. X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, and R.B. Wicker: Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 16, 153 (2012).

    Article  CAS  Google Scholar 

  22. J. Parthasarathy, B. Starly, S. Raman, and A. Christensen: Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 3, 249 (2010).

    Article  Google Scholar 

  23. Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, and L.C. Zhang: Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater. 113, 56 (2016).

    Article  CAS  Google Scholar 

  24. E. Sallica-Leva, R. Caram, A.L. Jardini, and J.B. Fogagnolo: Ductility improvement due to martensite α′ decomposition in porous Ti–6Al–4V parts produced by selective laser melting for orthopedic implants. J. Mech. Behav. Biomed. Mater. 54, 149 (2016).

    Article  CAS  Google Scholar 

  25. O. Scott-Emuakpor, C. Holycross, T. George, K. Knapp, and J. Beck: Fatigue and strength studies of titanium 6Al–4V fabricated by direct metal laser sintering. J. Eng. Gas Turbines Power 138, 022101 (2016).

    Article  CAS  Google Scholar 

  26. B.V. Krishna, S. Bose, and A. Bandyopadhyay: Low stiffness porous Ti structures for load-bearing implants. Acta Biomater. 3, 997 (2007).

    Article  CAS  Google Scholar 

  27. T. Furumoto, A. Koizumi, M.R. Alkahari, R. Anayama, A. Hosokawa, R. Tanaka, and T. Ueda: Permeability and strength of a porous metal structure fabricated by additive manufacturing. J. Mater. Process. Technol. 219, 10 (2015).

    Article  CAS  Google Scholar 

  28. L. Reig, V. Amigó, D.J. Busquets, and J.A. Calero: Development of porous Ti6Al4V samples by microsphere sintering. J. Mater. Process. Technol. 212, 3 (2012).

    Article  CAS  Google Scholar 

  29. Y. Torres, J.A. Rodríguez, S. Arias, M. Echeverry, S. Robledo, V. Amigo, and J.J. Pavón: Processing, characterization and biological testing of porous titanium obtained by space-holder technique. J. Mater. Sci. 47, 6565 (2012).

    Article  CAS  Google Scholar 

  30. Y. Torres, J.J. Pavón, I. Nieto, and J.A. Rodríguez: Conventional powder metallurgy process and characterization of porous titanium for biomedical applications. Metall. Mater. Trans. B 42, 891 (2011).

    Article  CAS  Google Scholar 

  31. D.J. Jorgensen and D.C. Dunand: Ti–6Al–4V with micro-and macropores produced by powder sintering and electrochemical dissolution of steel wires. Mater. Sci. Eng., A 527, 849 (2010).

    Article  CAS  Google Scholar 

  32. S.M. Kalantari, H. Arabi, S. Mirdamadi, and S.A. Mirsalehi: Biocompatibility and compressive properties of Ti–6Al–4V scaffolds having Mg element. J. Mech. Behav. Biomed. Mater. 48, 183 (2015).

    Article  CAS  Google Scholar 

  33. Y. Torres, S. Lascano, J. Bris, J. Pavón, and J.A. Rodriguez: Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques. Mater. Sci. Eng., C 37, 148 (2014).

    Article  CAS  Google Scholar 

  34. E.E. Aşık and Ş. Bor: Fatigue behavior of Ti–6Al–4V foams processed by magnesium space holder technique. Mater. Sci. Eng., A 621, 157 (2015).

    Article  CAS  Google Scholar 

  35. H. Shang, A. Mohanram, and R.K. Bordia: Densification and microstructural evolution of hierarchically porous ceramics during sintering. J. Am. Ceram. Soc. 98, 3424 (2015).

    Article  CAS  Google Scholar 

  36. L. Olmos, T. Takahashi, D. Bouvard, C.L. Martin, L. Salvo, D. Bellet, and M. Di Michiel: Analysing the sintering of heterogeneous powder structures by in situ microtomography. Philos. Mag. 89, 2949 (2009).

    Article  CAS  Google Scholar 

  37. J. Serra: Image Analysis and Mathematical Morphology (Academic Press, London, 1982).

    Google Scholar 

  38. P. Babin, G. Della Valle, H. Chiron, P. Cloetens, J. Hoszowska, P. Pernot, A.L. Réguerre, L. Salvo, and R. Dendievel: Fast X-ray tomography analysis of bubble growth and foam setting during breadmaking. J. Cereal Sci. 43, 393 (2006).

    Article  Google Scholar 

  39. L. Olmos, C.L. Martin, D. Bouvard, D. Bellet, and M. Di Michiel: Investigation of the sintering of heterogeneous powder systems by synchrotron microtomography and discrete element simulation. J. Am. Ceram. Soc. 92, 1492 (2009).

    Article  CAS  Google Scholar 

  40. A. Vagnon, J.P. Rivière, J.M. Missiaen, D. Bellet, M. Di Michiel, C. Josserond, and D. Bouvard: 3D statistical analysis of a copper powder sintering observed in situ by synchrotron microtomography. Acta Mater. 56, 1084 (2008).

    Article  CAS  Google Scholar 

  41. A. Marmottant, L. Salvo, C.L. Martin, and A. Mortensen: Coordination measurements in compacted NaCl irregular powders using X-ray microtomography. J. Eur. Ceram. Soc. 28, 2441 (2008).

    Article  CAS  Google Scholar 

  42. K.K. Phani and S.K. Niyogi: Young’s modulus of porous brittle solids. J. Mater. Sci. 22, 257 (1987).

    Article  CAS  Google Scholar 

  43. J. Kováčik: Correlation between Young’s modulus and porosity in porous materials. J. Mater. Sci. Lett. 18, 1007 (1999).

    Article  Google Scholar 

  44. L.F. Nielsen: Elasticity and damping of porous materials and impregnated materials. J. Am. Ceram. Soc. 67, 93 (1984).

    Article  CAS  Google Scholar 

  45. A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami, and N.M. Davies: Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 6, 1640 (2010).

    Article  CAS  Google Scholar 

  46. J.P. Li, P. Habibovic, M. van den Doel, C.E. Wilson, J.R. de Wijn, C.A. van Blitterswijk, and K. de Groot: Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28, 2810 (2007).

    Article  CAS  Google Scholar 

  47. Y. Takahashi and Y. Tabata: Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J. Biomater. Sci., Polym. Ed. 15, 41 (2004).

    Article  CAS  Google Scholar 

  48. A.I. Itälä, H.O. Ylänen, C. Ekholm, K.H. Karlsson, and H.T. Aro: Pore diameter of more than 100 μm is not requisite for bone ingrowth in rabbits. J. Biomed. Mater. Res., Part A 58, 679 (2001).

    Article  Google Scholar 

  49. J.C. Piemme: Titanium PM for Orthopedic Implants. World PM2016 Proceedings—Biomedical Applications. Manuscript refereed by Dr. José Manuel Martin (2016).

  50. M. Grimm and J. Williams: Measurements of permeability in human calcaneal trabecular bone. J. Biomech. 30, 743 (1997).

    Article  CAS  Google Scholar 

  51. E. Nauman, K. Fong, and T. Keaveny: Dependence of intertrabecular permeability on flow direction and anatomic site. Ann. Biomed. Eng. 27, 517 (1999).

    Article  CAS  Google Scholar 

  52. C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, and M. Mabuchi: Processing and mechanical properties of autogenous titanium implant materials. J. Mater. Sci. Mater. Med. 13, 397 (2002).

    Article  CAS  Google Scholar 

  53. G. Gagg, E. Ghassemieh, and F.E. Wiria: Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant. Mater. Sci. Eng., C 33, 3858 (2013).

    Article  CAS  Google Scholar 

  54. S. Barui, S. Chatterjee, S. Mandal, A. Kumar, and B. Basu: Microstructure and compression properties of 3D powder printed Ti–6Al–4V scaffolds with designed porosity: Experimental and computational analysis. Mater. Sci. Eng., C 70, 812 (2017).

    Article  CAS  Google Scholar 

  55. R. Singh, P.D. Lee, T.C. Lindley, R.J. Dashwood, E. Ferrie, and T. Imwinkelried: Characterization of the structure and permeability of titanium foams for spinal fusion devices. Acta Biomater. 5, 477 (2009).

    Article  CAS  Google Scholar 

  56. Z. Zhang, D. Jones, S. Yue, P.D. Lee, J.R. Jones, C.J. Sutcliffe, and E. Jones: Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants. Mater. Sci. Eng., C 33, 4055 (2013).

    Article  CAS  Google Scholar 

  57. J.F. Despois and A. Mortensen: Permeability of open-pore microcellular materials. Acta Mater. 53, 1381 (2005).

    Article  CAS  Google Scholar 

  58. M.R. Dias, P.R. Fernandes, J.M. Guedes, and S.J. Hollister: Permeability analysis of scaffolds for bone tissue engineering. J. Biomech. 45, 938 (2012).

    Article  CAS  Google Scholar 

  59. H.U. Camron, R.M. Pilliar, and I. Macnab: The rate of bone ingrowth into porous metal. J. Biomed. Mater. Res., Part A 10, 295 (1976).

    Article  Google Scholar 

  60. J.D. Bobyn, R.M. Pilliar, H.U. Cameron, and G.C. Weatherly: The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin. Orthop. Relat. Res. 150, 263 (1980).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank CIC of the UMSNH and ECOS M15P01 for the financial support and the facilities to develop this study. The Laboratory “Lumir” Geosciences of the UNAM, Juriquilla for the 3D image acquisition and processing is also acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Olmos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabezas-Villa, J.L., Olmos, L., Bouvard, D. et al. Processing and properties of highly porous Ti6Al4V mimicking human bones. Journal of Materials Research 33, 650–661 (2018). https://doi.org/10.1557/jmr.2018.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.35

Navigation