Skip to main content
Log in

Bioactive glass-ceramic scaffolds by additive manufacturing and sinter-crystallization of fine glass powders

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Wollastonite (CaSiO3)–diopside (CaMgSi2O6) glass-ceramic scaffolds have been successfully fabricated using two different additive manufacturing techniques: powder-based 3D printing (3DP) and digital light processing (DLP), coupled with the sinter-crystallization of glass powders with two different compositions. The adopted manufacturing process depended on the balance between viscous flow sintering and crystallization of the glass particles, in turn influenced by the powder size and the sensitivity of CaO–MgO–SiO2 glasses to surface nucleation. 3DP used coarser glass powders and was more appropriate for low temperature firing (800–900 °C), leading to samples with limited crystallization. On the contrary, DLP used finer glass powders, leading to highly crystallized glass-ceramic samples. Despite the differences in manufacturing technology and crystallization, all samples featured very good strength-to-density ratios, which benefit their use for bone tissue engineering applications. The bioactivity of 3D-printed glass-ceramics after immersion in simulated body fluid and the similarities, in terms of ionic releases and hydroxyapatite formation with already validated bioactive glass-ceramics, were preliminarily assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. R. Gmeiner, U. Deisinger, J. Schönherr, B. Lechner, R. Detsch, A.R. Boccaccini, and J. Stampfl: Additive manufacturing of bioactive glasses and silicate bioceramics. J. Ceram. Sci. Technol. 6, 75 (2015).

    Google Scholar 

  2. K. Chopra, P. Mummery, B. Derby, and J. Gough: Gel-cast glass-ceramic tissue scaffolds of controlled architecture produced via stereolithography of moulds. Biofabrication 4, 045002 (2012).

    CAS  Google Scholar 

  3. S. Padilla, S. Sánchez-Salcedo, and M. Vallet-Regí: Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering. J. Biomed. Mater. Res., Part A 81, 224 (2007).

    CAS  Google Scholar 

  4. T-M.G. Chu, J.W. Halloran, S.J. Hollister, and S.E. Feinberg: Hydroxyapatite implants with designed internal architecture. J. Mater. Sci. Mater. Med. 12, 471 (2001).

    CAS  Google Scholar 

  5. S. Limpanuphap and B. Derby: Manufacture of biomaterials by a novel printing process. J. Mater. Sci. Mater. Med. 13, 1163 (2002).

    CAS  Google Scholar 

  6. Q. Fu, E. Saiz, and A.P. Tomsia: Bioinspired strong and highly porous glass scaffolds. Adv. Funct. Mater. 22, 1058 (2011).

    Google Scholar 

  7. M.N. Rahaman, D.E. Day, B.S. Bal, Q. Fu, S.B. Jung, L.F. Bonewald, and A.P. Tomsia: Bioactive glass in tissue engineering. Acta Biomater. 7, 2355 (2011).

    CAS  Google Scholar 

  8. Q. Fu, E. Saiz, M.N. Rahaman, and A.P. Tomsia: Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Mater. Sci. Eng., C 31, 1245 (2011).

    CAS  Google Scholar 

  9. A.M. Deliormanlı and M.N. Rahaman: Direct-write assembly of silicate and borate bioactive glass scaffolds for bone repair. J. Eur. Ceram. Soc. 32, 3637 (2012).

    Google Scholar 

  10. S. Eqtesadi, A. Motealleh, A. Pajares, and P. Miranda: Effect of milling media on processing and performance of 13-93 bioactive glass scaffolds fabricated by robocasting. Ceram. Int. 41, 1379 (2015).

    CAS  Google Scholar 

  11. L.L. Hench and T. Kokubo: Properties of bioactive glasses and glass-ceramics. In Handbook of Biomaterial Properties, J. Black and G. Hastings, eds. (Chapman & Hall, London, 1998); pp. 355–563.

    Google Scholar 

  12. P. Tesavibul, R. Felzmann, S. Gruber, R. Liska, I. Thompson, A.R. Boccaccini, and J. Stampfl: Processing of 45S5 Bioglass® by lithography-based additive manufacturing. Mater. Lett. 74, 81 (2012).

    CAS  Google Scholar 

  13. A. Winkel, R. Meszaros, S. Reinsch, R. Müller, N. Travitzky, T. Fey, P. Greil, and L. Wondraczek: Sintering of 3D-printed glass/HAp composites. J. Am. Ceram. Soc. 95, 3387 (2012).

    CAS  Google Scholar 

  14. A.R. Boccaccini, Q. Chen, L. Lefebvre, L. Gremillard, and J. Chevalier: Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass-ceramics. Faraday Discuss. 136, 27 (2007).

    CAS  Google Scholar 

  15. F. Baino, M. Ferraris, O. Bretcanu, E. Verné, and C. Vitale-Brovarone: Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. J. Appl. Biomater. 27, 872 (2013).

    CAS  Google Scholar 

  16. H. Elsayed, A.R. Romero, L. Ferroni, C. Gardin, B. Zavan, and E. Bernardo: Bioactive glass-ceramic scaffolds from novel ‘inorganic gel casting’ and sinter-crystallization. Materials 10, 171 (2017).

    Google Scholar 

  17. O. Peitl, G.P. LaTorre, and L.L. Hench: Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J. Biomed. Mater. Res. 30, 509 (1996).

    Google Scholar 

  18. O. Peitl, E.D. Zanotto, and L.L. Hench: Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramic. J. Non-Cryst. Solids 292, 115 (2001).

    CAS  Google Scholar 

  19. R. Meszaros, R. Zhao, N. Travitzky, T. Fey, P. Greil, and L. Wondraczek: Three-dimensional printing of a bioactive glass. Glass Technol.: Eur. J. Glass Sci. Technol., Part A 52, 111 (2011).

    CAS  Google Scholar 

  20. M. Montazerian and E.D. Zanotto: History and trends of bioactive glass-ceramics. J. Biomed. Mater. Res., Part A 104, 1231 (2016).

    CAS  Google Scholar 

  21. R. Müller, E.D. Zanotto, and V.M. Fokin: Surface crystallization of silicate glasses: Nucleation sites and kinetics. J. Non-Cryst. Solids 274, 208 (2000).

    Google Scholar 

  22. M.O. Prado and E.D. Zanotto: Glass sintering with concurrent crystallization. Compt. Rendus Chem. 5, 773 (2002).

    CAS  Google Scholar 

  23. A.A. Francis, R.D. Rawlings, R. Sweeney, and A.R. Boccaccini: Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass. J. Non-Cryst. Solids 333, 187 (2004).

    CAS  Google Scholar 

  24. M.S. Hernández-Crespo, M. Romero, and J.M. Rincón: Nucleation and crystal growth of glasses produced by a generic plasma arc-process. J. Eur. Ceram. Soc. 26, 1679 (2006).

    Google Scholar 

  25. E. Bernardo, G. Scarinci, E. Edme, U. Michon, and N. Planty: Fast-sintered gehlenite glass-ceramics from plasma-vitrified municipal solid waste incinerator fly ashes. J. Am. Ceram. Soc. 92, 528 (2009).

    CAS  Google Scholar 

  26. A. Ray and A.N. Tiwari: Compaction and sintering behaviour of glass-alumina composites. Mater. Chem. Phys. 67, 220 (2001).

    CAS  Google Scholar 

  27. S.F. Hulbert, S.J. Morrison, and J.J. Klawitter: Tissue reaction to three ceramics of porous and non-porous structures. J. Biomed. Mater. Res. 6, 347 (1972).

    CAS  Google Scholar 

  28. M.A. Sainz, P. Pena, S. Serena, and A. Caballero: Influence of design on bioactivity of novel CaSiO3–CaMg(SiO3)2 bioceramics: In vitro simulated body fluid test and thermodynamic simulation. Acta Biomater. 6, 2797 (2010).

    CAS  Google Scholar 

  29. A. Börger, P. Supancic, and R. Danzer: The ball on three balls test for strength testing of brittle discs: Stress distribution in the disc. J. Eur. Ceram. Soc. 22, 142 (2002).

    Google Scholar 

  30. H. Elsayed, P. Colombo, and E. Bernardo: Direct ink writing of wollastonite-diopside glass-ceramic scaffolds from a silicone resin and engineered fillers. J. Eur. Ceram. Soc. 37, 4187 (2017).

    CAS  Google Scholar 

  31. A. Karamanov and M. Pelino: Induced crystallization porosity and properties of sintered diopside and wollastonite glass-ceramics. J. Eur. Ceram. Soc. 28, 555 (2008).

    CAS  Google Scholar 

  32. A.R. Boccaccini: On the viscosity of glass composites containing rigid inclusions. Mater. Lett. 34, 285 (1998).

    CAS  Google Scholar 

  33. R. Müller, M. Eberstein, S. Reinsch, W.A. Schiller, J. Deubener, and A. Thiel: Effect of rigid inclusions on sintering of low temperature co-fired ceramics. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B 48, 259 (2007).

    Google Scholar 

  34. M.O. Prado, E.B. Ferreira, and E.D. Zanotto: Sintering kinetics of crystallizing glass particles. Ceram. Trans. 170, 163 (2005).

    CAS  Google Scholar 

  35. A.A. Reddy, D.U. Tulyaganov, M.J. Pascual, V.V. Kharton, E.V. Tsipis, V.A. Kolotygin, and J.M.F. Ferreira: SrO-containing diopside glass-ceramic sealants for solid oxide fuel cells: Mechanical reliability and thermal shock resistance. Fuel Cells 13, 689 (2013).

    CAS  Google Scholar 

  36. I.D. Thompson and L.L. Hench: Mechanical properties of bioactive glasses, glass-ceramics and composites. Proc. Inst. Mech. Eng., Part H 212, 127 (1998).

    CAS  Google Scholar 

  37. M.N. Rahaman, X. Liu, and T.S. Huang: Bioactive glass scaffolds for the repair of load-bearing bones. In Advances in Bioceramics and Porous Ceramics, Vol. 32, R. Narayan and P. Colombo, eds. (John Wiley & Sons, pmHoboken, New Jersey, United States, 2009); p. 65.

    Google Scholar 

  38. L.J. Gibson and M.F. Ashby: Cellular Solids, Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1999).

    Google Scholar 

  39. T. Nakamura, T. Yamamuro, S. Higashi, T. Kokubo, and S. Itoo: A new glass-ceramic for bone replacement: Evaluation of its bonding to bone tissue. J. Biomed. Mater. Res. 19, 685 (1985).

    CAS  Google Scholar 

  40. T. Kokubo: Bioceramics and Their Clinical Applications (Elsevier, New York City, New York, United States, 2008).

    Google Scholar 

  41. J.X. Lu, M. Descamps, J. Dejou, G. Koubi, P. Hardouin, J. Lemaitre, and J.P. Proust: The biodegradation mechanism of calcium phosphate biomaterials in bone. J. Biomed. Mater. Res. 63, 408 (2002).

    CAS  Google Scholar 

  42. C. Ohtsuki, T. Kokubo, and T. Yamamuro: Mechanism of apatite formation on CaOSiO2P2O5 glasses in a simulated body fluid. J. Non-Cryst. Solids 143, 84 (1992).

    CAS  Google Scholar 

  43. C. Wu and J. Chang: A review of bioactive silicate ceramics. Biomed. Mater. 8, 032001 (2013).

    CAS  Google Scholar 

  44. P. Siriphannon, Y. Kameshima, A. Yasumori, K. Okada, and S. Hayashi: Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J. Eur. Ceram. Soc. 22, 511 (2002).

    CAS  Google Scholar 

  45. Y. Iimori, Y. Kameshima, K. Okada, and S. Hayashi: Comparative study of apatite formation on CaSiO3 ceramics in simulated body fluids with different carbonate concentrations. J. Mater. Sci.: Mater. Med. 16, 73 (2005).

    CAS  Google Scholar 

  46. E. Salahinejad and R. Vahedifard: Deposition of nanodiopside coatings on metallic biomaterials to stimulate apatite-forming ability. Mater. Des. 123, 120 (2017).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Hamada Elsayed gratefully acknowledges the financial support of the Cultural Affairs and Missions Sector, Egypt. The authors thank Mr. Carlo Castegini and Ms. Ilaria Baesso (University of Padova) for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Bernardo.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsayed, H., Zocca, A., Schmidt, J. et al. Bioactive glass-ceramic scaffolds by additive manufacturing and sinter-crystallization of fine glass powders. Journal of Materials Research 33, 1960–1971 (2018). https://doi.org/10.1557/jmr.2018.120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.120

Navigation