Skip to main content

Advertisement

Log in

Hierarchically structured carbon nanomaterials for electrochemical energy storage applications

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Structural hierarchy is ubiquitous in nature and quite important for optimizing the properties of functional materials. Carbon nanomaterials, owing to their unique and tunable physical and chemical properties, have been regarded as promising candidates for various energy storage systems. Constructing hierarchically structured carbon nanomaterials (HSCNs) can boost electrochemical performance of nanocarbons. Therefore, HSCNs have attracted tremendous research attentions in recent years. In this review, we summarized the recent progress in hierarchical structure design of carbon nanomaterials and their potential applications in different energy storage technologies. First we give a brief introduction about carbon nanomaterials and the hierarchical structure merits. Subsequently, recent research works on hierarchical structure design of carbon nanomaterials was summarized and classified according to applications in lithium-ion batteries, sodium-ion batteries, supercapacitors and lithium–sulfur batteries, respectively. In addition, the challenges of HSCNs in different applications were also concluded and reviewed. At last, design principles of HSCNs were summarized and future development trends were prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

ILLUS. 1
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. L. Dai, D.W. Chang, J.B. Baek, and W. Lu: Carbon nanomaterials for advanced energy conversion and storage. Small 8 (8), 1130 (2012).

    Article  CAS  Google Scholar 

  2. D. Su and R. Schlögl: Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 3 (2), 136 (2010).

    Article  CAS  Google Scholar 

  3. S.L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J. Zhang, Y. Wang, J. Liu, J. Li, and G. Cao: Nanostructured carbon for energy storage and conversion. Nano Energy 1 (2), 195 (2012).

    Article  CAS  Google Scholar 

  4. X. Zheng, J. Luo, W. Lv, D-W. Wang, and Q-H. Yang: Two-dimensional porous carbon: Synthesis and ion transport properties. Adv. Mater. 27 (36), 5388 (2015).

    Article  CAS  Google Scholar 

  5. H.W. Kroto, J.R. Heath, S.C. O’Brien, R. F Curl, and R.E. Smalley: C60: Buckminsterfullerene. Nature 318 (162), 163 (1985).

    Google Scholar 

  6. S. Iijima and T. Ichihashi: Single-shell carbon nanotubes of 1-nm diameter. Nature 363 (6430), 603 (1993).

    Article  CAS  Google Scholar 

  7. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306 (5696), 666 (2004).

    Article  CAS  Google Scholar 

  8. X. Yu, J. Wang, Z-H. Huang, W. Shen, and F. Kang: Ordered mesoporous carbon nanospheres as electrode materials for high-performance supercapacitors. Electrochem. Commun. 36, 66 (2013).

    Article  CAS  Google Scholar 

  9. L. Zhang, A. Aboagye, A. Kelkar, C. Lai, and H. Fong: A review: Carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 49 (2), 463 (2014).

    Article  CAS  Google Scholar 

  10. X. Yu, J. Zhao, R. Lv, Q. Liang, C. Zhan, Y. Bai, Z-H. Huang, W. Shen, and F. Kang: Facile synthesis of nitrogen-doped carbon nanosheets with hierarchical porosity for high performance supercapacitors and lithium–sulfur batteries. J. Mater. Chem. A 3 (36), 18400 (2015).

    Article  CAS  Google Scholar 

  11. S. Dutta, A. Bhaumik, and K.C-W. Wu: Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 7 (11), 3574 (2014).

    Article  CAS  Google Scholar 

  12. Q. Xu, X. Yu, Q. Liang, Y. Bai, Z-H. Huang, and F. Kang: Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes. J. Electroanal. Chem. 739, 84 (2015).

    Article  CAS  Google Scholar 

  13. J.P. Paraknowitsch and A. Thomas: Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6 (10), 2839 (2013).

    Article  CAS  Google Scholar 

  14. Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, and L. Qu: A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem., Int. Ed. 124 (45), 11533 (2012).

    Article  Google Scholar 

  15. J. Wang, H.L. Xin, and D. Wang: Recent progress on mesoporous carbon materials for advanced energy conversion and storage. Part. Part. Syst. Charact. 31 (5), 515 (2014).

    Article  CAS  Google Scholar 

  16. C.N.R. Rao, K. Biswas, K.S. Subrahmanyam, and A. Govindaraj: Graphene, the new nanocarbon. J. Mater. Chem. 19 (17), 2457 (2009).

    Article  CAS  Google Scholar 

  17. P. Avouris: Graphene: Electronic and photonic properties and devices. Nano Lett. 10 (11), 4285 (2010).

    Article  CAS  Google Scholar 

  18. O. Akhavan, E. Ghaderi, S. Aghayee, Y. Fereydooni, and A. Talebi: The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J. Mater. Chem. 22 (27), 13773 (2012).

    Article  CAS  Google Scholar 

  19. J.H. Kim, W.S. Chang, D. Kim, J.R. Yang, J.T. Han, G.W. Lee, J.T. Kim, and S.K. Seol: 3d printing of reduced graphene oxide nanowires. Adv. Mater. 27 (1), 157 (2015).

    Article  CAS  Google Scholar 

  20. Z. Lin, Z. Zeng, X. Gui, Z. Tang, M. Zou, and A. Cao: Carbon nanotube sponges, aerogels, and hierarchical composites: Synthesis, properties, and energy applications. Adv. Energy Mater. 6 (17), 1600554 (2016).

    Article  CAS  Google Scholar 

  21. S. Ravi and S. Vadukumpully: Sustainable carbon nanomaterials: Recent advances and its applications in energy and environmental remediation. J. Environ. Chem. Eng. 4 (1), 835 (2016).

    Article  CAS  Google Scholar 

  22. T. Liu, F. Zhang, Y. Song, and Y. Li: Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5 (34), 17705–17733 (2017).

    Article  CAS  Google Scholar 

  23. S. Xin, Y.G. Guo, and L.J. Wan: Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 45 (10), 1759 (2012).

    Article  CAS  Google Scholar 

  24. S. Wenzel, T. Hara, J. Janek, and P. Adelhelm: Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4 (9), 3342 (2011).

    Article  CAS  Google Scholar 

  25. X. Ji, K.T. Lee, and L.F. Nazar: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8 (6), 500 (2009).

    Article  CAS  Google Scholar 

  26. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22 (35), 3906 (2010).

    Article  CAS  Google Scholar 

  27. Q. Wu, L. Yang, X. Wang, and Z. Hu: From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 50 (2), 435 (2017).

    Article  CAS  Google Scholar 

  28. Z. Zheng, X. Zhang, F. Pei, Y. Dai, X. Fang, T. Wang, and N. Zheng: Hierarchical porous carbon microrods composed of vertically aligned graphene-like nanosheets for Li-ion batteries. J. Mater. Chem. A 3 (39), 19800 (2015).

    Article  CAS  Google Scholar 

  29. M.Q. Zhao, Q. Zhang, J.Q. Huang, G.L. Tian, J.Q. Nie, H.J. Peng, and F. Wei: Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 5, 3410 (2014).

    Article  CAS  Google Scholar 

  30. D.H. Doughty and E.P. Roth: A general discussion of Li ion battery safety. Electrochem. Soc. Interface 21 (2), 37 (2012).

    CAS  Google Scholar 

  31. Z. Xie, Z. He, X. Feng, W. Xu, X. Cui, J. Zhang, C. Yan, M.A. Carreon, Z. Liu, and Y. Wang: Hierarchical sandwich-like structure of ultrafine N-rich porous carbon nanospheres grown on graphene sheets as superior lithium-ion battery anodes. ACS Appl. Mater. Interfaces 8 (16), 10324 (2016).

    Article  CAS  Google Scholar 

  32. Y. Dong, M. Yu, Z. Wang, Y. Liu, X. Wang, Z. Zhao, and J. Qiu: A top-down strategy toward 3d carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv. Funct. Mater. 26 (42), 7590 (2016).

    Article  CAS  Google Scholar 

  33. H-J. Yen, H. Tsai, M. Zhou, E.F. Holby, S. Choudhury, A. Chen, L. Adamska, S. Tretiak, T. Sanchez, S. Iyer, H. Zhang, L. Zhu, H. Lin, L. Dai, G. Wu, and H-L. Wang: Structurally defined 3D nanographene assemblies via bottom-up chemical synthesis for highly effcient lithium storage. Adv. Mater. 28 (46), 10250 (2016).

    Article  CAS  Google Scholar 

  34. Y. Chen, X. Li, K. Park, J. Song, J. Hong, L. Zhou, Y. Mai, H. Huang, and J.B. Goodenough: Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J. Am. Chem. Soc. 135 (44), 16280 (2013).

    Article  CAS  Google Scholar 

  35. Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng, and D. Zhao: Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135 (4), 1524 (2013).

    Article  CAS  Google Scholar 

  36. Z. Wang, X. Yu, W. He, Y.V. Kaneti, D. Han, Q. Sun, Y. He, and B. Xiang: Construction of a unique two-dimensional hierarchical carbon architecture for superior lithium-ion storage. ACS Appl. Mater. Interfaces 49 (49), 33399 (2016).

    Article  CAS  Google Scholar 

  37. Y. Yang, R. Pang, X. Zhou, Y. Zhang, H. Wu, and S. Guo: Composites of chemically-reduced graphene oxide sheets and carbon nanospheres with three-dimensional network structure as anode materials for lithium ion batteries. J. Mater. Chem. 22 (43), 23194 (2012).

    Article  CAS  Google Scholar 

  38. H. Ma, H. Jiang, Y. Jin, L. Dang, Q. Lu, and F. Gao: Carbon nanocages@ultrathin carbon nanosheets: One-step facile synthesis and application as anode material for lithium-ion batteries. Carbon 105, 586 (2016).

    Article  CAS  Google Scholar 

  39. Z. Zuo, T.Y. Kim, I. Kholmanov, H. Li, H. Chou, and Y. Li: Ultra-light hierarchical graphene electrode for binder-free supercapacitors and lithium-ion battery anodes. Small 11 (37), 4922 (2015).

    Article  CAS  Google Scholar 

  40. L. Chen, X. Jin, Y. Wen, H. Lan, X. Yu, D. Sun, and T. Yi: Intrinsically coupled 3d nGs@CNTs frameworks as anode materials for lithium-ion batteries. Chem. Mater. 27 (21), 7289 (2015).

    Article  CAS  Google Scholar 

  41. J. Xu, M. Wang, N.P. Wickramaratne, M. Jaroniec, S. Dou, and L. Dai: High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 27 (12), 2042 (2015).

    Article  CAS  Google Scholar 

  42. Y. Yan, Y. Yin, Y. Guo, and L. Wan: A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 4 (8), 1079 (2014).

    Article  CAS  Google Scholar 

  43. J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E.M. Lotfabad, B.C. Olsen, and D. Mitlin: Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7 (12), 11004 (2013).

    Article  CAS  Google Scholar 

  44. Z. Lyu, L. Yang, D. Xu, J. Zhao, H. Lai, Y. Jiang, Q. Wu, Y. Li, X. Wang, and Z. Hu: Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Res. 8 (11), 3535 (2015).

    Article  CAS  Google Scholar 

  45. D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang, and L. Zhang: A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6 (6), 1501929 (2016).

    Article  CAS  Google Scholar 

  46. F. Zhang, Y. Yao, J. Wan, D. Henderson, X. Zhang, and L. Hu: High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl. Mater. Interfaces 9 (1), 391 (2017).

    Article  CAS  Google Scholar 

  47. T. Liu, C. Zhu, T. Kou, M.A. Worsley, F. Qian, C. Condes, E.B. Duoss, C.M. Spadaccini, and Y. Li: Ion intercalation induced capacitance improvement for graphene based supercapacitor electrodes. ChemNanoMat 2 (7), 635 (2016).

    Article  CAS  Google Scholar 

  48. F. Zhang, T. Liu, G. Hou, T. Kou, L. Yue, R. Guan, and Y. Li: Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 9 (10), 2875 (2016).

    Article  CAS  Google Scholar 

  49. F. Zhang, T. Liu, M. Li, M. Yu, Y. Luo, Y. Tong, and Y. Li: Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17 (5), 3097 (2017).

    Article  CAS  Google Scholar 

  50. C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song, Y. Yao, Y. Gong, I. Kierzewski, J. Xie, and L. Hu: All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538 (2017).

    Article  CAS  Google Scholar 

  51. C. Zhu, T. Liu, F. Qian, T.Y. Han, E.B. Duoss, J. D Kuntz, C.M. Spadaccini, M.A. Worsley, and Y. Li: Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16 (6), 3448 (2016).

    Article  CAS  Google Scholar 

  52. Z. Huang, T. Liu, Y. Song, Y. Li, and X. Liu: Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale 9, 13119 (2017).

    Article  CAS  Google Scholar 

  53. A.G. Pandolfo and A.F. Hollenkamp: Carbon properties and their role in supercapacitors. J. Power Sources 157 (1), 11 (2006).

    Article  CAS  Google Scholar 

  54. D. Wang, F. Li, M. Liu, G. Lu, and H. Cheng: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 47 (2), 373 (2008).

    Article  CAS  Google Scholar 

  55. C. Guo and C. Li: A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energy Environ. Sci. 4 (11), 4504 (2011).

    Article  CAS  Google Scholar 

  56. Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, and X. Duan: Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4544 (2014).

    Article  CAS  Google Scholar 

  57. Y. Liang, L. Chen, D. Zhuang, H. Liu, R. Fu, M. Zhang, D. Wu, and K. Matyjaszewski: Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes. Chem. Sci. 8, 2101 (2017).

    Article  CAS  Google Scholar 

  58. Z. Yuan, H. Peng, J. Huang, X. Liu, D. Wang, X. Cheng, and Q. Zhang: Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries. Adv. Funct. Mater. 24 (39), 6244 (2015).

    Article  CAS  Google Scholar 

  59. W. Deng, A. Hu, X. Chen, S. Zhang, Q. Tang, Z. Liu, B. Fan, and K. Xiao: Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium–sulfur batteries. J. Power Sources 322, 138 (2016).

    Article  CAS  Google Scholar 

  60. Z. Zheng, H. Guo, F. Pei, X. Zhang, X. Chen, X. Fang, T. Wang, and N. Zheng: High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li–S batteries. Adv. Funct. Mater. 26 (48), 8952 (2016).

    Article  CAS  Google Scholar 

  61. J. Huang, H. Peng, X. Liu, J. Nie, X. Cheng, Q. Zhang, and F. Wei: Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium–sulfur batteries. J. Mater. Chem. A 2 (28), 10869 (2014).

    Article  CAS  Google Scholar 

  62. Y.V. Kaneti, J. Tang, R.R. Salunkhe, X. Jiang, A. Yu, K.C-W. Wu, and Y. Yamauchi: Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29 (12), 1604898 (2017).

    Article  CAS  Google Scholar 

  63. F. Xu, Z. Tang, S. Huang, L. Chen, Y. Liang, W. Mai, H. Zhong, R. Fu, and D. Wu: Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 6, 7221 (2015).

    Article  Google Scholar 

  64. F. Xu, D. Wu, R. Fu, and B. Wei: Design and preparation of porous carbons from conjugated polymer precursors. Mater. Today 20, (2017). doi: https://doi.org/10.1016/j.mattod.2017.04.026.

  65. X. Lin, Y. Liang, Z. Lu, H. Lou, X. Zhang, S. Liu, B. Zheng, R. Liu, R. Fu, and D. Wu: Mechanochemistry: A green, activation-free and top-down strategy to high-surface-area carbon materials. ACS Sustainable Chem. Eng. 5 (10), 8535 (2017).

    Article  CAS  Google Scholar 

  66. F. Xu, J. Xu, H. Xu, Y. Lu, H. Yang, Z. Tang, Z. Lu, R. Fu, and D. Wu: Fabrication of novel powdery carbon aerogels with high surface areas for superior energy storage. Energy Storage Mater. 7, 8 (2017).

    Article  Google Scholar 

  67. G. Xu, B. Ding, P. Nie, L. Shen, H. Dou, and X. Zhang: Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 6 (1), 194 (2014).

    Article  CAS  Google Scholar 

  68. G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, and Y. Cui: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11 (10), 4462 (2011).

    Article  CAS  Google Scholar 

  69. Z. Lyu, D. Xu, L. Yang, R. Che, R. Feng, J. Zhao, Y. Li, Q. Wu, X. Wang, and Z. Hu: Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries. Nano Energy 12, 657 (2015).

    Article  CAS  Google Scholar 

  70. Z. Tang, S. Liu, Z. Lu, X. Lin, B. Zheng, R. Liu, D. Wu, and R. Fu: A simple self-assembly strategy for ultrahigh surface area nitrogen-doped porous carbon nanospheres with enhanced adsorption and energy storage performances. Chem. Commun. 53, 6764 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Key Basic Research Program of China (2014CB932400), the National Natural Science Foundation of China (51672156 and 51232005), the Guangdong special support program (2015TQ01N401), and the Shenzhen Technical Plan Project (KQJSCX20160226191136 and JCYJ20170412170706047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Bing He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Z., Yu, X. et al. Hierarchically structured carbon nanomaterials for electrochemical energy storage applications. Journal of Materials Research 33, 1058–1073 (2018). https://doi.org/10.1557/jmr.2017.464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.464

Navigation