Skip to main content
Log in

Microstructure evolution of large-scale titanium slab ingot based on CAFE method during EBCHM

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The purpose of this work is, based on CAFE method, to study the microstructure evolution and optimize the quality of the large-scale titanium slab ingot during EBCHM. The nucleation parameters of the microstructure simulation of titanium ingot are determined based on one of the actual experimental results. For the determined parameters, our theoretical results are agreement with other experimental results. The effects of pouring temperature and pulling speed on the microstructure are presented based on CAFE method. The quantitative analyses of the simulated results show that with the pulling speed increasing, the number of grains decreases, whereas the mean grain radius increases under identical thermal condition; with the pouring temperature increasing, the mean grain radius increases under the given pulling speed. Our results are very important to obtain the optimal structure of the ingots by controlling pulling speed and pouring temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

Abbreviations

1:

Electron beam cold hearth melting (EBCHM)

2:

Vacuum arc remelting (VAR)

3:

Monte Carlo method (MC)

4:

Finite element coupling the cellular automaton method (CAFE)

5:

Kurz, Giovanola, and Trivediand model (KGT)

References

  1. R.R. Boyer: An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng., A 213, 103–114 (1996).

    Article  Google Scholar 

  2. S. Seok, C.D. Onal, K.J. Cho, and R.J. Wood: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE ASME Trans. Mechatron. 18, 1485–1497 (2013).

    Article  Google Scholar 

  3. A. Mitchell: The electron beam melting and refining of titanium alloys. Mater. Sci. Eng., A 263, 217–223 (1999).

    Article  Google Scholar 

  4. K. Vutova and V. Donchev: Electron beam melting and refining of metals: Computational modeling and optimization. Materials 6, 4626–4640 (2013).

    Article  Google Scholar 

  5. T. Tatsuhiko, H. Kanayama, and T. Onoye: Temperature measurement of molten metal surface in electron beam melting of titanium alloys. ISIJ Int. 32, 593–599 (1992).

    Article  Google Scholar 

  6. Q.L. Liu, X.M. Li, and Y.H. Jiang: Research progress of electron beam clod hearth melting for titanium and titanium alloys. Hot Work. Technol. 45, 9–14 (2016).

    Google Scholar 

  7. J.R. Wood: Producing Ti-6Al-4V plate from single-melt EBCHM ingot. JOM 54, 56–58 (2002).

    Article  CAS  Google Scholar 

  8. K. Vutova, E. Koleva, and G. Mladenov: Simulation of thermal transfer process in cast ingot at electron beam melting and refining. Int. Rev. Mech. Eng. 5, 257–265 (2009).

    Google Scholar 

  9. E. Koleva, K. Vutova, and G. Mladenov: The role of ingot crucible thermal contact in mathematical modelling of the heat transfer during electron beam melting. Vacuum 62, 189–196 (2001).

    Article  CAS  Google Scholar 

  10. A.N. Kalinyuka, N.P. Triguba, V.N. Zamkova, and O.M. Ivasishin: Microstructure, texture, and mechanical properties of electron-beam melted Ti–6Al–4V. Mater. Sci. Eng., A 346, 178–188 (2003).

    Article  Google Scholar 

  11. R.C. Atwood, P.D. Lee, and R.S. Minisandram: Multiscale modelling of microstructure formation during vacuum arc remelting of titanium 6-4. J. Mater. Sci. 39, 7193–7197 (2004).

    Article  CAS  Google Scholar 

  12. M. Rappaz and Ch.A. Gandin: Probabilistic modelling of microstructure formation in solidification processes. Acta Metall. Mater. 41, 345–360 (1993).

    Article  CAS  Google Scholar 

  13. S.P. Wu, D.R. Liu, J.J. Guo, C.Y. Li, and Y.Q. Su: Numerical simulation of microstructure evolution of Ti–6Al–4V alloy in vertical centrifugal casting. Mater. Sci. Eng., A 426, 240–249 (2006).

    Article  Google Scholar 

  14. Ch.A. Gandin and M. Rappaz: A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metall. Mater. 42, 2233–2246 (1994).

    Article  CAS  Google Scholar 

  15. Ch.A. Gandin, M. Rappaz, and R. Tintillier: Three-dimensional probabilistic simulation of solidification grain structures: Application to superalloy precision castings. Metall. Mater. Trans. A 24, 467–479 (1993).

    Article  Google Scholar 

  16. T. Carozzani, H. Digonnet, and C. Gandin: 3D CAFE modeling of grain structures: Application to primary dendritic and secondary eutectic solidification. Modell. Simul. Mater. Sci. Eng. 20, 15010–15028 (2012).

    Article  Google Scholar 

  17. M. Rappaz, C.A. Gandin, J.L. Desbiolles, and P. Thévoz: Prediction of grain structures in various solidification processes. Metall. Mater. Trans. A 27, 695–705 (1996).

    Article  Google Scholar 

  18. F.J. Tian, Z.G. Li, and J.X. Song: Solidification of laser deposition shaping for TC4 alloy based on cellular automation. J. Alloys Compd. 676, 542–550 (2016).

    Article  CAS  Google Scholar 

  19. A. Burbelko, J. Falkus, W. Kapturkiewicz, K. Sołek, P. Drożdż, and M. WróbeL: Modeling of the grain structure formation in the steel continuous ingot by cafe method. Arch. Metall. Mater. 57, 379–384 (2012).

    Article  CAS  Google Scholar 

  20. Q.L. Liu, X.M. Li, X.F. Chen, N.T. Geng, and Y.H. Jiang: Numerical simulation of electron beam cold hearth melting for the large scale titanium slab ingot during solidification process. Spec. Cast. Nonferrous Alloys 3, 244–249 (2017).

    Google Scholar 

  21. W. Kurz, B. Giovanola, and R. Trivedi: Theory of microstructural development during rapid solidification. Acta Metall. Mater. 34, 823–830 (1986).

    Article  CAS  Google Scholar 

  22. H.C. Kou, Y.J. Zhang, P.F. Li, R. Hu, J.S. Li, and L. Zhou: Numerical simulation of titanium alloy ingot solidification structure during VAR process based on three-dimensional CAFE method. Rare Met. Mater. Eng. 43, 1537–1542 (2014).

    Article  Google Scholar 

  23. J.L. Wang, F.M. Wang, Y.Y. Zhao, J.M. Zhang, and W. Ren: Numerical simulation of 3D-microstructures in solidification processes based on the CAFE method. Int. J. Miner., Metall. Mater. 16, 640–645 (2009).

    CAS  Google Scholar 

  24. Q.L. Liu, X.M. Li, and Y.H. Jiang: Numerical simulation of EBCHM for the large-scale TC4 alloy slab ingot during the solidification process. Vacuum 141, 1–9 (2017).

    Article  Google Scholar 

  25. M. Rappaz, Ch. Charbon, and R. Sasikumar: About the shape of eutectic grains solidifying in a thermal gradient. Acta Metall. Mater. 42, 2365–2374 (1994).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported By Applied Basic Research Program of Yunnan Province (No. 2013FC001), Science and Technology Project of Yunnan Province (No. 2016FB089), and Startup Foundation for Advanced Talents of Kunming University of Science and Technology (No. KKSY201551034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Ming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, QL., Li, XM. & Jiang, YH. Microstructure evolution of large-scale titanium slab ingot based on CAFE method during EBCHM. Journal of Materials Research 32, 3175–3182 (2017). https://doi.org/10.1557/jmr.2017.174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.174

Navigation