Skip to main content
Log in

Zinc cobalt bimetallic nanoparticles embedded in porous nitrogen-doped carbon frameworks for the reduction of nitro compounds

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of highly efficient and stable inexpensive catalysts for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 in an aqueous solution by utilizing metal-organic frameworks (MOFs) as precursor and template remains a hot topic. Herein, a simple self-template strategy was developed to synthesize a porous nitrogen-doped carbon frameworks embedded with zinc and cobalt nanoparticles (Zn0.3Co2.7@NC) catalyst by thermal annealing of the bimetallic zinc-cobalt zeolitic imidazolate framework (Zn0.3Co2.7-ZIF) as an effective precursor and template. The resulting Zn0.3Co2.7@NC catalysts show an excellent catalytic activity for the reduction of 4-NP and the reduction reaction was completed only in 5 min with nearly 100% conversion. The apparent rate constant for the reaction of 4-NP reduction was estimated to be 0.683 min−1. Moreover, the catalyst was extended to reduce other nitro compounds and exhibited excellent catalytic activity. When compared to other related catalysts in the literature, the catalytic activity of catalyst is superior. Therefore, the resulting Zn0.3Co2.7@NC is expected to get more extensive application in the field of catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. M. Raula, M.H. Rashid, S. Lai, M. Roy, and T.K. Mandal: Solvent-adoptable polymer Ni/NiCo alloy nanochains: Highly active and versatile catalysts for various organic reactions in both aqueous and nonaqueous media. ACS Appl. Mater. Interfaces 4, 878 (2012).

    Article  CAS  Google Scholar 

  2. H.M. Torres Galvis, J.H. Bitter, C.B. Khare, M. Ruitenbeek, A.I. Dugulan, and K.P. de Jong: Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335, 835 (2012).

    Article  CAS  Google Scholar 

  3. V. van Speybroeck, R. Gani, and R.J. Meier: The calculation of thermodynamic properties of molecules. Chem. Soc. Rev. 39, 1764 (2010).

    Article  CAS  Google Scholar 

  4. Y. Lin, Y. Qiao, Y. Wang, Y. Yan, and J. Huang: Self-assembled laminated nanoribbon-directed synthesis of noble metallic nanoparticle-decorated silica nanotubes and their catalytic applications. J. Mater. Chem. 22, 18314 (2012).

    Article  CAS  Google Scholar 

  5. N. Yan, Z. Zhao, Y. Li, F. Wang, H. Zhong, and Q. Chen: Synthesis of novel two-phase Co@SiO2 nanorattles with high catalytic activity. Inorg. Chem. 53, 9073 (2014).

    Article  CAS  Google Scholar 

  6. M. Zhao, K. Deng, L. He, Y. Liu, G. Li, H. Zhao, and Z. Tang: Core–shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 136, 1738 (2014).

    Article  CAS  Google Scholar 

  7. A.H. Chughtai, N. Ahmad, H.A. Younus, A. Laypkov, and F. Verpoort: Metal-organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 44, 6804 (2015).

    Article  CAS  Google Scholar 

  8. N. Stock and S. Biswas: Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933 (2012).

    Article  CAS  Google Scholar 

  9. A. Aijaz, N. Fujiwara, and Q. Xu: From metal-organic framework to nitrogen-decorated nanoporous carbons: High CO2 uptake and efficient catalytic oxygen reduction. J. Am. Chem. Soc. 136, 6790 (2014).

    Article  CAS  Google Scholar 

  10. W. Bak, H.S. Kim, H. Chun, and W.C. Yoo: Facile synthesis of metal/metal oxide nanoparticles inside a nanoporous carbon matrix (M/MO@C) through the morphology-preserved transformation of metal-organic framework. Chem. Commun. 51, 7238 (2015).

    Article  CAS  Google Scholar 

  11. Y-Z. Chen, C. Wang, Z-Y. Wu, Y. Xiong, Q. Xu, S-H. Yu, and H-L. Jiang: From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 27, 5010 (2015).

    Article  CAS  Google Scholar 

  12. C. Bai, X. Yao, and Y. Li: Easy access to amides through aldehydic C–H bond functionalization catalyzed by heterogeneous Co-based catalysts. ACS Catal. 5, 884 (2015).

    Article  CAS  Google Scholar 

  13. M. Kim, D-H. Nam, H-Y. Park, C. Kwon, K. Eom, S. Yoo, J. Jang, H-J. Kim, E. Cho, and H. Kwon: Cobalt-carbon nanofibers as an efficient support-free catalyst for oxygen reduction reaction with a systematic study of active site formation. J. Mater. Chem. A 3, 14284 (2015).

    Article  CAS  Google Scholar 

  14. W. Zhong, H. Liu, C. Bai, S. Liao, and Y. Li: Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-based catalysts. ACS Catal. 5, 1850 (2015).

    Article  CAS  Google Scholar 

  15. S. Bai, X. Shen, G. Zhu, M. Li, H. Xi and K. Chen: In situ growth of Ni(x)Co(100-x) nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties. Appl. Mater. and Interfaces 4, 2378–2386 (2012).

    Article  CAS  Google Scholar 

  16. L. Hu, R. Zhang, L. Wei, F. Zhang, and Q. Chen: Synthesis of FeCo nanocrystals encapsulated in nitrogen-doped graphene layers for use as highly efficient catalysts for reduction reactions. Nanoscale 7, 450–454 (2014).

    Article  CAS  Google Scholar 

  17. P. Su, H. Xiao, J. Zhao, Y. Yao, Z. Shao, C. Li, and Q. Yang: Nitrogen-doped carbon nanotubes derived from Zn–Fe–ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species. Chem. Sci. 4, 2941 (2013).

    Article  CAS  Google Scholar 

  18. L.M. Aguirre-Díaz, F. Gándara, M. Iglesias, N. Snejko, E. Gutiérrez-puebla, and M.Á. Monge: Tunable catalytic activity of solid solution metal-organic frameworks in one-pot multicomponent reactions. J. Am. Chem. Soc. 137, 6132 (2015).

    Article  CAS  Google Scholar 

  19. Y-L. Hou, R.W-Y. Sun, X-P. Zhou, J-H. Wang, and D. Li: A copper(i)/copper(ii)-salen coordination polymer as a bimetallic catalyst for three-component Strecker reactions and degradation of organic dyes. Chem. Commun. 50, 2295 (2014).

    Article  CAS  Google Scholar 

  20. J. Long, K. Shen, L. Chen, and Y. Li: Multimetal-MOF-derived transition metal alloy NPs embedded in an N-doped carbon matrix: Highly active catalysts for hydrogenation reactions. J. Mater. Chem. A 4, 10254 (2016).

    Article  CAS  Google Scholar 

  21. S. Naeem, A. Ribes, A.J.P. White, M.N. Haque, K.B. Holt, and J.D.E.T. Wilton-Ely: Multimetallic complexes and functionalized nanoparticles based on oxygen- and nitrogen-donor combinations. Inorg. Chem. 52, 4700 (2013).

    Article  CAS  Google Scholar 

  22. Y. Liao, D. Zhang, Q. Wang, T. Wen, L. Jia, Z. Zhong, F. Bai, L. Tang, W. Que, and H. Zhang: Open-top TiO2 nanotube arrays with enhanced photovoltaic and photochemical performances via a micromechanical cleavage approach. J. Mater. Chem. A 3, 14279 (2015).

    Article  CAS  Google Scholar 

  23. Z-Q. Shi, L-X. Jiao, J. Sun, Z-B. Chen, Y-Z. Chen, X-H. Zhu, J-H. Zhou, X-C. Zhou, X-Z. Li, and R. Li: Cobalt nanoparticles in hollow mesoporous spheres as a highly efficient and rapid magnetically separable catalyst for selective epoxidation of styrene with molecular oxygen. RSC Adv. 4, 47 (2014).

    Article  CAS  Google Scholar 

  24. Y. Liu, B. Liu, Y. Liu, Q. Wang, W. Hu, P. Jing, L. Liu, S. Yu, and J. Zhang: Improvement of catalytic performance of preferential oxidation of CO in H2-rich gases on three-dimensionally ordered macro- and meso-porous Pt–Au/CeO2 catalysts. Appl. Catal., B 142–143, 615 (2013).

    Article  CAS  Google Scholar 

  25. F. Rong, J. Zhao, P. Su, Y. Yao, M. Li, Q. Yang, and C. Li: Zinc-cobalt oxides as efficient water oxidation catalysts: The promotion effect of ZnO. J. Mater. Chem. A 3, 4010–4017 (2015).

    Article  CAS  Google Scholar 

  26. Z-F. Huang, J. Song, K. Li, M. Tahir, Y-T. Wang, L. Pan, L. Wang, X. Zhang, and J-J. Zou: Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 138, 1359 (2016).

    Article  CAS  Google Scholar 

  27. X. Li, C. Zeng, J. Jiang, and L. Ai: Magnetic cobalt nanoparticles embedded in hierarchically porous nitrogen-doped carbon frameworks for highly efficient and well-recyclable catalysis. J. Mater. Chem. A 4, 7476–7482 (2016).

    Article  CAS  Google Scholar 

  28. M. Rakap and S. Özkar: Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Appl. Catal., B 91, 21 (2009).

    Article  CAS  Google Scholar 

  29. M. Rakap and S. Özkar: Hydroxyapatite-supported cobalt(0) nanoclusters as efficient and cost-effective catalyst for hydrogen generation from the hydrolysis of both sodium borohydride and ammonia-borane. Catal. Today 183, 17 (2012).

    Article  CAS  Google Scholar 

  30. X. Li, X. Gao, L. Ai, and J. Jiang: Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem. Eng. J. 274, 238–246 (2015).

    Article  CAS  Google Scholar 

  31. R. Wu, X. Qian, K. Zhou, J. Wei, J. Lou, and P.M. Ajayan: Porous spinel ZnxCo3− xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8, 6297 (2014).

    Article  CAS  Google Scholar 

  32. S. Peng, L. Li, H. Tan, R. Cai, W. Shi, C. Li, S.G. Mhaisalkar, M. Srinivasan, S. Ramakrishna, and Q. Yan: MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv. Funct. Mater. 24, 2155 (2014).

    Article  CAS  Google Scholar 

  33. Y. Xiao, S. Liu, F. Li, A. Zhang, J. Zhao, S. Fang, and D. Jia: 3D hierarchical Co3O4 twin-spheres with an urchin-like structure: Large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv. Funct. Mater. 22, 4052 (2012).

    Article  CAS  Google Scholar 

  34. A. Kong, C. Mao, Q. Lin, X. Wei, X. Bu, and P. Feng: From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction. Dalton Trans. 44, 6748 (2015).

    Article  CAS  Google Scholar 

  35. J. Wei, Y. Hu, Z. Wu, Y. Liang, S. Leong, B. Kong, X. Zhang, D. Zhao, G.P. Simon, and H. Wang: A graphene-directed assembly route to hierarchically porous Co–Nx/C catalysts for high-performance oxygen reduction. J. Mater. Chem. A 3, 16867 (2015).

    Article  CAS  Google Scholar 

  36. Z. Zhang, J. Hao, W. Yang, and J. Tang: Defect-rich CoP/nitrogen-doped carbon composites derived from a metal-organic framework: High-performance electrocatalysts for the hydrogen evolution reaction. ChemCatChem 7, 1920 (2015).

    Article  CAS  Google Scholar 

  37. Y. Lü, Y. Wang, H. Li, Y. Lin, Z. Jiang, Z. Xie, Q. Kuang, and L. Zheng: Mof-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7, 13604 (2015).

    Article  CAS  Google Scholar 

  38. N.L. Torad, M. Hu, S. Ishihara, H. Sukegawa, A.A. Belik, M. Imura, K. Ariga, Y. Sakka, and Y. Yamauchi: Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10, 2096 (2014).

    Article  CAS  Google Scholar 

  39. N. Khemasiri, C. Chananonnawathorn, A. Klamchuen, S. Jessadaluk, A. Pankiew, S. Vuttivong, P. Eiamchai, M. Horprathum, S. Pornthreeraphat, P. Kasamechonchung, K. Tantisantisom, T. Boonkoom, P. Songsiririthigul, H. Nakajima, and J. Nukeaw: Crucial role of reactive pulse-gas on a sputtered Zn3N2 thin film formation. RSC Adv. 6, 94905 (2016).

    Article  CAS  Google Scholar 

  40. N. Jiang, D.G. Georgiev, A.H. Jayatissa, R.W. Collins, J. Chen, and E. McCullen: Zinc nitride films prepared by reactive RF magnetron sputtering of zinc in nitrogen containing atmosphere. J. Phys. D: Appl. Phys. 45, 135101 (2012).

    Article  CAS  Google Scholar 

  41. X-K. Kong, Z-Y. Sun, M. Chen, C-L. Chen, and Q-W. Chen: Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy Environ. Sci. 6, 3260 (2013).

    Article  CAS  Google Scholar 

  42. Y. Yang, W. Zhang, X. Ma, H. Zhao, and X. Zhang: Facile construction of mesoporous N-Doped carbons as highly efficient 4-nitrophenol reduction catalysts. ChemCatChem 7, 3454 (2015).

    Article  CAS  Google Scholar 

  43. L. Ma, X. Shen, G. Zhu, Z. Ji, and H. Zhou: CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction. Carbon 77, 255–265 (2015).

    Article  CAS  Google Scholar 

  44. K-L. Wu, X-W. Wei, X-M. Zhou, D-H. Wu, X-W. Liu, Y. Ye, and Q. Wang: NiCo2 alloys: Controllable synthesis, magnetic properties, and catalytic applications in reduction of 4-nitrophenol. J. Phys. Chem. C 115, 16268–16274 (2011).

    Article  CAS  Google Scholar 

  45. Y. Yang, Y. Zhang, C.J. Sun, X. Li, W. Zhang, X. Ma, Y. Ren, and X. Zhang: Heterobimetallic metal-organic framework as a precursor to prepare a nickel/nanoporous carbon composite catalyst for 4-nitrophenol reduction. ChemCatChem 6, 3084–3090 (2014).

    Article  CAS  Google Scholar 

  46. S. Bai, X. Shen, G. Zhu, M. Li, H. Xi, and K. Chen: In situ growth of NixCo100− x nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties. ACS Appl. Mater. Interfaces 4, 2378–2386 (2012).

    Article  CAS  Google Scholar 

  47. X. Wang, D. Liu, S. Song, and H. Zhang: Heterobimetallic metal-organic framework as a precursor to prepare a nickel/nanoporous carbon composite catalyst for 4-nitrophenol reduction. J. Am. Chem. Soc. 135, 15864–15872 (2013).

    Article  CAS  Google Scholar 

  48. J. Li, C.Y. Liu, and Y. Liu: Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 22, 8426–8430 (2012).

    Article  CAS  Google Scholar 

  49. L. Ai, H. Yue, and J. Jiang: Environmentally friendly light-driven synthesis of Ag nanoparticles in situ grown on magnetically separable biohydrogels as highly active and recyclable catalysts for 4-nitrophenol reduction. J. Mater. Chem. 22, 23447–23453 (2012).

    Article  CAS  Google Scholar 

  50. S.C. Tang, S. Vongehr, and X.K. Meng: Environmentally friendly light-driven synthesis of Ag nanoparticles in situ grown on magnetically separable biohydrogels as highly active and recyclable catalysts for 4-nitrophenol reduction. J. Phys. Chem. C 114, 977–982 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support from the National Natural Science Foundation of China (Nos. 21162027 and 21261022) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuejuan Xu or Jide Wang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Li, H., Xie, H. et al. Zinc cobalt bimetallic nanoparticles embedded in porous nitrogen-doped carbon frameworks for the reduction of nitro compounds. Journal of Materials Research 32, 1777–1786 (2017). https://doi.org/10.1557/jmr.2017.148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.148

Navigation