Skip to main content
Log in

Monotonic and cyclic mechanical reliability of metallization lines on polymer substrates

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mechanical stability of Ag and Cu printed and evaporated metallization lines on polymer substrates is investigated by means of monotonic tensile and cyclic bending tests. It is shown that lines which demonstrate good performance during monotonic tests fail at lower strains during a cyclic bending tests. Evaporated lines with the grain size of several hundreds of nanometers have good ductility and consequently good stability during monotonic loading but at the same time they fail at low strains during cyclic bending. Printed lines with nanocrystalline microstructure, in contrast, demonstrate more intensive cracking during monotonic loading but higher failure strains during cyclic bending. Apart from the grain size effect, the effect of film thickness on the saturation crack density after cyclic bending is also demonstrated. Thinner films have higher crack density in accordance with the shear lag model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. S. Nau, C. Wolf, S. Sax, and E.J.W. List-Kratochvil: Organic non-volatile resistive photo-switches for flexible image detector arrays. Adv. Mater. 27, 1048 (2015).

    Article  CAS  Google Scholar 

  2. S. Nau, C. Wolf, K. Popovic, A. Blümel, F. Santoni, A. Gagliardi, A. di Carlo, S. Sax, and E.J.W. List-Kratochvil: Inkjet-printed resistive switching memory based on organic dielectric materials: From single elements to array technology. Adv. Electron. Mater. 1, 140003–1 (2015).

    Article  CAS  Google Scholar 

  3. I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, S. Bauer, S.P. Lacour, and S. Wagner: Flexible ferroelectret field-effect transistor for large-area sensor skins and microphones. Appl. Phys. Lett. 89, 073501–1 (2006).

    Article  CAS  Google Scholar 

  4. M. Koo, K. Il Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi, K. Kang, and K.J. Lee: Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12, 4810 (2012).

    Article  CAS  Google Scholar 

  5. A. Klug, P. Patter, K. Popovic, A. Blümel, S. Sax, M. Lenz, O. Glushko, M.J. Cordill, and E.J.W. List-Kratochvil: Recent progress in printed 2/3D electronic devices. In. Proc. Spie 9569, E.J.W. List Kratochvil, ed. (SPIE, San Diego, 2015); p. 95690N.

    Google Scholar 

  6. N.C. Woo, K. Cherenack, G. Tröster, and R. Spolenak: Designing micro-patterned Ti films that survive up to 10% applied tensile strain. Appl. Phys. A 100, 281 (2010).

    Article  CAS  Google Scholar 

  7. N. Lu, X. Wang, Z. Suo, and J.J. Vlassak: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909–1 (2007).

    Article  CAS  Google Scholar 

  8. V.M. Marx, F. Toth, A. Wiesinger, J. Berger, C. Kirchlechner, M.J. Cordill, F.D. Fischer, F.G. Rammerstorfer, and G. Dehm: The influence of a brittle Cr interlayer on the deformation behavior of thin Cu films on flexible substrates: Experiment and model. Acta Mater. 89, 278 (2015).

    Article  CAS  Google Scholar 

  9. S. Olliges, P.A. Gruber, V. Auzelyte, Y. Ekinci, H.H. Solak, and R. Spolenak: Tensile strength of gold nanointerconnects without the influence of strain gradients. Acta Mater. 55, 5201 (2007).

    Article  CAS  Google Scholar 

  10. S. Frank, U.A. Handge, S. Olliges, and R. Spolenak: The relationship between thin film fragmentation and buckle formation: Synchrotron-based in situ studies and two-dimensional stress analysis. Acta Mater. 57, 1442 (2009).

    Article  CAS  Google Scholar 

  11. P.A. Gruber, E. Arzt, and R. Spolenak: Brittle-to-ductile transition in ultrathin Ta/Cu film systems. J. Mater. Res. 24, 1906 (2009).

    Article  CAS  Google Scholar 

  12. M.J. Cordill, F.D. Fischer, F.G. Rammerstorfer, and G. Dehm: Adhesion energies of Cr thin films on polyimide determined from buckling: Experiment and model. Acta Mater. 58, 5520 (2010).

    Article  CAS  Google Scholar 

  13. B. Erdem Alaca, M.T.A. Saif, and H. Sehitoglu: On the interface debond at the edge of a thin film on a thick substrate. Acta Mater. 50, 1197 (2002).

    Article  CAS  Google Scholar 

  14. J. Andersons, S. Tarasovs, and Y. Leterrier: Evaluation of thin film adhesion to a compliant substrate by the analysis of progressive buckling in the fragmentation test. Thin Solid Films 517, 2007 (2009).

    Article  CAS  Google Scholar 

  15. O. Glushko and M.J. Cordill: Electrical resistance of metal films on polymer substrates. Exp. Tech. 40, 303 (2016).

    Article  Google Scholar 

  16. O. Glushko, V.M. Marx, C. Kirchlechner, I. Zizak, and M.J. Cordill: Recovery of electrical resistance in copper films on polyethylene terephthalate subjected to a tensile strain. Thin Solid Films 552, 141 (2014).

    Article  CAS  Google Scholar 

  17. A. Wyss, M. Schamel, A.S. Sologubenko, R. Denk, M. Hohage, P. Zeppenfeld, and R. Spolenak: Reflectance anisotropy spectroscopy as a tool for mechanical characterization of metallic thin films. J. Phys. D: Appl. Phys. 48, 415303–1 (2015).

    Article  CAS  Google Scholar 

  18. G.D. Sim, Y. Hwangbo, H.H. Kim, S.B. Lee, and J.J. Vlassak: Fatigue of polymer-supported Ag thin films. Scr. Mater. 66, 915 (2012).

    Article  CAS  Google Scholar 

  19. N. Lambricht, T. Pardoen, and S. Yunus: Giant stretchability of thin gold films on rough elastomeric substrates. Acta Mater. 61, 540 (2013).

    Article  CAS  Google Scholar 

  20. B. Putz, R.L. Schoeppner, O. Glushko, D.F. Bahr, and M.J. Cordill: Improved electro-mechanical performance of gold films on polyimide without adhesion layers. Scr. Mater. 102, 23 (2015).

    Article  CAS  Google Scholar 

  21. S-H. Choa, C-K. Cho, W-J. Hwang, K. Tae Eun, and H-K. Kim: Mechanical integrity of flexible InZnO/Ag/InZnO multilayer electrodes grown by continuous roll-to-roll sputtering. Sol. Energy Mater. Sol. Cells 95, 3442 (2011).

    Article  CAS  Google Scholar 

  22. O. Glushko, M.J. Cordill, A. Klug, and E.J.W. List-Kratochvil: The effect of bending loading conditions on the reliability of inkjet printed and evaporated silver metallization on polymer substrates. Microelectron. Reliab. 56, 109 (2016).

    Article  CAS  Google Scholar 

  23. Q. Guan, J. Laven, P.C.P. Bouten, and G. de With: Mechanical failure of brittle thin films on polymers during bending by two-point rotation. Thin Solid Films 611, 107 (2016).

    Article  CAS  Google Scholar 

  24. W.P. Vellinga, J.T.M. De Hosson, and P.C.P. Bouten: Direct measurement of intrinsic critical strain and internal strain in barrier films. J. Appl. Phys. 110, 044907–1 (2011).

    Article  CAS  Google Scholar 

  25. B.J. Kim, H.A.S. Shin, J.H. Lee, T.Y. Yan, T. Haas, P. Gruber, I.S. Chou, O. Kraft, and Y.C. Joo: Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates. J. Mater. Res. 29, 2827 (2014).

    Article  CAS  Google Scholar 

  26. B-J. Kim, T. Haas, A. Friederich, J-H. Lee, D-H. Nam, J.R. Binder, W. Bauer, I-S. Choi, Y-C. Joo, P.A. Gruber, and O. Kraft: Improving mechanical fatigue resistance by optimizing the nanoporous structure of inkjet-printed Ag electrodes for flexible devices. Nanotechnology 25, 125706–1 (2014).

    Article  CAS  Google Scholar 

  27. G-D. Sim, Y-S. Lee, S-B. Lee, and J.J. Vlassak: Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films. Mater. Sci. Eng., A 575, 86 (2013).

    Article  CAS  Google Scholar 

  28. R. Schwaiger and O. Kraft: Size effects in the fatigue behavior of thin Ag films. Acta Mater. 51, 195 (2003).

    Article  CAS  Google Scholar 

  29. O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, and E. Arzt: Fatigue behavior of polycrystalline thin copper films. Zeitschrift Fuer Met. Res. Adv. Tech. 93, 392 (2002).

    CAS  Google Scholar 

  30. G.P. Zhang, C.A. Volkert, R. Schwaiger, E. Arzt, and O. Kraft: Damage behavior of 200-nm thin copper films under cyclic loading. J. Mater. Res. 20, 201 (2005).

    Article  CAS  Google Scholar 

  31. D. Wang, P.A. Gruber, C.A. Volkert, and O. Kraft: Influences of Ta passivation layers on the fatigue behavior of thin Cu films. Mater. Sci. Eng., A 610, 33 (2014).

    Article  CAS  Google Scholar 

  32. P.A. Gruber, J. Böhm, F. Onuseit, A. Wanner, R. Spolenak, and E. Arzt: Size effects on yield strength and strain hardening for ultra-thin Cu films with and without passivation: A study by synchrotron and bulge test techniques. Acta Mater. 56, 2318 (2008).

    Article  CAS  Google Scholar 

  33. M.J. Cordill and A.A. Taylor: Thickness effect on the fracture and delamination of titanium films. Thin Solid Films 589, 209 (2015).

    Article  CAS  Google Scholar 

  34. S. Kim, S. Won, G-D. Sim, I. Park, and S-B. Lee: Tensile characteristics of metal nanoparticle films on flexible polymer substrates for printed electronics applications. Nanotechnology 24, 085701–1 (2013).

    Article  CAS  Google Scholar 

  35. J.R. Greer and R.A. Street: Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Mater. 55, 6345 (2007).

    Article  CAS  Google Scholar 

  36. S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E.J.W. List: Direct ink-jet printing of Ag-Cu nanoparticle and Ag-precursor based electrodes for OFET applications. Adv. Funct. Mater. 17, 3111 (2007).

    Article  CAS  Google Scholar 

  37. N. Lu, Z. Suo, and J.J. Vlassak: The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 58, 1679 (2010).

    Article  CAS  Google Scholar 

  38. C.S. Pande and K.P. Cooper: Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Prog. Mater. Sci. 54, 689 (2009).

    Article  CAS  Google Scholar 

  39. O. Glushko, A. Klug, E.J.W. List-Kratochvil, and M.J. Cordill: Relationship between mechanical damage and electrical degradation in polymer-supported metal films subjected to cyclic loading. Mater. Sci. Eng., A 662, 157 (2016).

    Article  CAS  Google Scholar 

  40. D.C. Agrawal and R. Raj: Measurement of the ultimate shear strength of a metal–ceramic interface. Acta Metall. 37, 1265 (1989).

    Article  CAS  Google Scholar 

  41. C.H. Hsueh and M. Yanaka: Multiple film cracking in film/substrate systems with residual stresses and unidirectional loading. J. Mater. Sci. 38, 1809 (2003).

    Article  CAS  Google Scholar 

  42. M. Yanaka, Y. Tsukahara, N. Nasako, and N. Takeda: Cracking phenomena of brittle films in nanostructure composites analysed by a modified shear lag model with residual strain. J. Mater. Sci. 33, 2111 (1998).

    Article  CAS  Google Scholar 

  43. F. Ahmed, K. Bayerlein, S.M. Rosiwal, M. Göken, and K. Durst: Stress evolution and cracking of crystalline diamond thin films on ductile titanium substrate: Analysis by micro-Raman spectroscopy and analytical modelling. Acta Mater. 59, 5422 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partially supported by the Austrian Research Promotion Agency (FFG) through the program “Produktion der Zukunft”, Project 843648 and the Austrian Science Fund (FWF) through project P27432-N20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan J. Cordill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glushko, O., Klug, A., List-Kratochvil, E.J.W. et al. Monotonic and cyclic mechanical reliability of metallization lines on polymer substrates. Journal of Materials Research 32, 1760–1769 (2017). https://doi.org/10.1557/jmr.2017.121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.121

Navigation