Skip to main content
Log in

MOF derived porous Co@C hexagonal-shaped prisms with high catalytic performance

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

There has been a continuous call for active, durable, and low-cost catalysts for a range of catalysis reactions. In this paper, porous Co@C composed of uniformly dispersed Co metal nanoparticles in hexagonal-shaped prisms carbon matrix were fabricated by in situ pyrolysis of hexagonal-shaped prismatic Co-MOF-74 crystals. The obtained nanoporous carbons have a high surface area of 195.2 m2/g and a strong magnetic response, thereby realizing fast molecular diffusion of reactant and easy magnetic separation. The resulting Co@C catalyst show a superior and durable catalytic activity for reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Moreover, Co@C can be recycled and still retains more than 75% of its original catalytic activity after 6 cycles. Therefore, it is reasonable to believe that such Co@C nanocomposites have great potential as a highly efficient and low-cost heterogeneous catalyst. It is believed that MOFs can be used to produce other catalysts with high porosity and uniformly dispersed active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. C. Bai, X. Yao, and Y. Li: Easy access to amides through aldehydic C–H bond functionalization catalyzed by heterogeneous Co-based catalysts. ACS Catal. 5 (2), 884–891 (2015).

    Article  CAS  Google Scholar 

  2. M. Kim, D.H. Nam, H.Y. Park, C. Kwon, K. Eom, S. Yoo, J. Jang, H.J. Kim, E. Cho, and H. Kwon: Cobalt–carbon nanofibers as an efficient support-free catalyst for oxygen reduction reaction with a systematic study of active site formation. J. Mater. Chem. A 3 (27), 14284–14290 (2015).

    Article  CAS  Google Scholar 

  3. J. Wang, D. Gao, G. Wang, S. Miao, H. Wu, J. Li, and X. Bao: Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis. J. Mater. Chem. A 2 (47), 20067–20074 (2014).

    Article  CAS  Google Scholar 

  4. W. Zhong, H. Liu, C. Bai, S. Liao, and Y. Li: Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-based catalysts. ACS Catal. 5 (3), 1850–1856 (2015).

    Article  CAS  Google Scholar 

  5. C.O. Ania, M. Seredych, E. Rodriguez-Castellon, and T.J. Bandosz: New copper/GO based material as an efficient oxygen reduction catalyst in an alkaline medium: The role of unique Cu/rGO architecture. Appl. Catal., B 163, 424–435 (2015).

    Article  CAS  Google Scholar 

  6. R.K. Rai, A. Mahata, S. Mukhopadhyay, S. Gupta, P.Z. Li, K.T. Nguyen, Y. Zhao, B. Pathak, and S.K. Singh: Room temperature chemoselective reduction of nitro groups using non-noble metal nanocatalysts in water. Inorg. Chem. 53, 2904–2909 (2014).

    Article  CAS  Google Scholar 

  7. F.H. Lin and R.A. Doong: Bifunctional Au–Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J. Phys. Chem. C 115 (14), 6591–6598 (2011).

    Article  CAS  Google Scholar 

  8. Z. Jiang, D. Jiang, A.M. Showkot Hossain, K. Qian, and J. Xie: In situ synthesis of silver supported nanoporous iron oxide microbox hybrids from metal–organic frameworks and their catalytic application in p-nitrophenol reduction. Phys. Chem. Chem. Phys. 17 (4), 2550–2559 (2015).

    Article  CAS  Google Scholar 

  9. Z.Q. Shi, L.X. Jiao, J. Sun, Z.B. Chen, Y.Z. Chen, X.H. Zhu, J.H. Zhou, X.C. Zhou, X.Z. Li, and R. Li: Cobalt nanoparticles in hollow mesoporous spheres as a highly efficient and rapid magnetically separable catalyst for selective epoxidation of styrene with molecular oxygen. RSC Adv. 4 (1), 47–53 (2014).

    Article  CAS  Google Scholar 

  10. N. Yan, Z. Zhao, Y. Li, F. Wang, H. Zhong, and Q. Chen: Synthesis of novel two phase Co@SiO2 nanorattles with high catalytic activity. Inorg. Chem. 53, 9073–9079 (2014).

    Article  CAS  Google Scholar 

  11. J.K. Sun, W.W. Zhan, T. Akita, and Q. Xu: Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: Soluble porous organic cage as a stabilizer and homogenizer. J. Am. Chem. Soc. 137, 7063–7066 (2015).

    Article  CAS  Google Scholar 

  12. Y. Zhu, X. Li, G. He, and X. Qi: Magnetic C–C@Fe3O4 double-shelled hollow microspheres via aerosol-based Fe3O4@C–SiO2 core–shell particles. Chem. Commun. 51 (14), 2991–2994 (2015).

    Article  CAS  Google Scholar 

  13. M. Li, X. Li, X. Qi, F. Luo, and G. He: Shape controlled synthesis of magnetic iron oxide@SiO2–Au@C particles with core–shell nanostructures. Langmuir 31 (18), 5190–5197 (2015).

    Article  CAS  Google Scholar 

  14. S. Zhou, S. Bai, E. Cheng, R. Qiao, Y. Xie, and Z. Li: Facile embedding of Au nanocrystals into silica spheres with controllable quantity for improved catalytic reduction of p-nitrophenol. Inorg. Chem. Front. 2 (10), 938–944 (2015).

    Article  CAS  Google Scholar 

  15. W. Zhang, G. Lu, C. Cui, Y. Liu, S. Li, W. Yan, C. Xing, Y.R. Chi, Y. Yang, and F. Huo: A family of metal-organic frameworks exhibiting size selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater. 26, 4056–4060 (2014).

    Article  CAS  Google Scholar 

  16. H.L. Jiang, T. Akita, T. Ishida, M. Haruta, and Q. Xu: Synergistic catalysis of Au@Ag core–shell nanoparticles stabilized on metal–organic framework. J. Am. Chem. Soc. 133 (5), 1304–1306 (2011).

    Article  CAS  Google Scholar 

  17. J.O. Nam, J. Kim, S.H. Jin, Y.M. Chung, and C.S. Lee: Microfluidic preparation of a highly active and stable catalyst by high performance of encapsulation of polyvinylpyrrolidone (PVP)-Pt nanoparticles in microcapsules. J. Colloid Interface Sci. 464, 246–253 (2016).

    Article  CAS  Google Scholar 

  18. W. Gong, L. Su, and X. Zhang: Preparation of catalytic films of the Au nanoparticle-carbon composite tubular arrays. Chem. Commun. 51 (29), 6333–6336 (2015).

    Article  CAS  Google Scholar 

  19. Y.Z. Chen, C. Wang, Z.Y. Wu, Y. Xiong, Q. Xu, S.H. Yu, and H.L. Jiang: From bimetallic metal–organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 27, 5010–5016 (2015).

    Article  CAS  Google Scholar 

  20. F. Zheng, Y. Yang, and Q. Chen: High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal–organic framework. Nat. Commun. 5, 1–10 (2014).

    Google Scholar 

  21. N.L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, and Y. Yamauchi: Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem. Commun. 49 (25), 2521–2523 (2013).

    Article  CAS  Google Scholar 

  22. H. Li, F. Yue, C. Yang, P. Qiu, P. Xue, Q. Xu, and J.D. Wang: Porous nanotubes derived from a metal-organic framework as high-performance supercapacitor electrodes. Ceram. Interfaces 42 (2), 3121–3129 (2016).

    Article  CAS  Google Scholar 

  23. Y.Z. Zhang, Y. Wang, Y.L. Xie, T. Cheng, W.Y. Lai, H. Pang, and W. Huang: Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale 6 (23), 14354–14359 (2014).

    Article  CAS  Google Scholar 

  24. H. Pang, J. Deng, J. Du, S. Li, J. Li, Y. Ma, J. Zhang, and J. Chen: Porous nanocubic Mn3O4–Co3O4 composites and their application as electrochemical supercapacitors. Dalton Trans. 41 (34), 10175–10181 (2012).

    Article  CAS  Google Scholar 

  25. J. Xi, Y. Xia, Y. Xu, J. Xiao, and S. Wang: (Fe,Co)@nitrogen-doped graphitic carbon nanocubes derived from polydopamine encapsulated metal–organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst. Chem. Commun. 51 (52), 10479–10482 (2015).

    Article  CAS  Google Scholar 

  26. J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, and Y. Li: Hollow Zn/Co ZIF particles derived from core–shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 54, 10889–10893 (2015).

    Article  CAS  Google Scholar 

  27. R. Wu, D.P. Wang, X. Rui, B. Liu, K. Zhou, A.W.K. Law, Q. Yan, J. Wei, and Z. Chen: In situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv. Mater. 27 (19), 3038–3044 (2015).

    Article  CAS  Google Scholar 

  28. Q. Wang, R. Zou, W. Xia, J. Ma, B. Qiu, A. Mahmood, R. Zhao, Y. Yang, D. Xia, and Q. Xu: Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 11 (21), 2511–2517 (2015).

    Article  CAS  Google Scholar 

  29. X.Y. Yu, L. Yu, H.B. Wu, and X.W. Lou: Formation of nickel sulfide nanoframes from metal–organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem., Int. Ed. 54, 1–6 (2015).

    Article  CAS  Google Scholar 

  30. P. Nie, L. Shen, H. Luo, B. Ding, G. Xu, J. Wang, and X.G. Zhang: Prussian blue analogues: A new class of anode materials for lithium ion batteries. J. Mater. Chem. A 2 (16), 5852–5857 (2014).

    Article  CAS  Google Scholar 

  31. Y. Liu, S. Liu, D. He, N. Li, Y. Ji, Z. Zheng, F. Luo, S. Liu, Z. Shi, and C. Hu: Crystal facets make a profound difference in polyoxometalate containing metal–organic frameworks as catalysts for biodiesel production. J. Am. Chem. Soc. 137 (39), 12697–12703 (2015).

    Article  CAS  Google Scholar 

  32. S. Zhang, H. Liu, P. Liu, Z. Yang, X. Feng, F. Huo, and X. Lu: A template free method for stable CuO hollow microspheres fabricated from a metal organic framework (HKUST-1). Nanoscale 7 (21), 9411–9415 (2015).

    Article  CAS  Google Scholar 

  33. N.L. Torad, M. Hu, S. Ishihara, H. Sukegawa, A.A. Belik, M. Imura, K. Ariga, Y. Sakka, and Y. Yamauchi: Direct synthesis of MOF derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10 (10), 2096–2107 (2014).

    Article  CAS  Google Scholar 

  34. Y. Lü, Y. Wang, H. Li, Y. Lin, Z. Jiang, Z. Xie, Q. Kuang, and L. Zheng: MOF derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7 (24), 13604–13611 (2015).

    Article  CAS  Google Scholar 

  35. Y.H. Xiao, S. Liu, F. Li, A. Zhang, J. Zhao, S. Fang, and D.Z. Jia: 3D hierarchical Co3O4 twin-spheres with an urchin like structure: Large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv. Funct. Mater. 22, 4052–4059 (2012).

    Article  CAS  Google Scholar 

  36. S.J. Peng, L.L. Li, H.T. Tan, R. Cai, W.H. Shi, C.C. Li, S.G. Mhaisalkar, M. Srinivasan, S. Ramakrishna, and Q.Y. Yan: MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv. Funct. Mater. 24, 2155–2162 (2014).

    Article  CAS  Google Scholar 

  37. H.B. Yi, F.S. Wen, L. Qiao, and F.S. Li: Microwave electromagnetic properties of multiwalled carbon nanotubes filled with Co nanoparticles. J. Appl. Phys. 106, 103922–103926 (2009).

    Article  CAS  Google Scholar 

  38. X. Shi, F. Zheng, N. Yan, and Q. Chen: CoMn2O4 hierarchical microspheres with high catalytic activity towards p-nitrophenol reduction. Dalton Trans. 43 (37), 13865–13873 (2014).

    Article  CAS  Google Scholar 

  39. T. Aditya, A. Pal, and T. Pal: Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts. Chem. Commun. 51 (46), 9410–9431 (2015).

    Article  CAS  Google Scholar 

  40. Y. Ma, Y. Ni, F. Guo, and N. Xiang: Flowerlike copper(II)-based coordination polymers particles: Rapid room-temperature fabrication, influencing factors, and transformation toward CuO microstructures with good catalytic activity for the reduction of 4-nitrophenol. Cryst. Growth Des. 15 (5), 2243–2252 (2015).

    Article  CAS  Google Scholar 

  41. Y.G. Wu, M. Wen, Q.S. Wu, and H. Fang: Ni/graphene nanostructure and its electron-enhanced catalytic action for hydrogenation reaction of nitrophenol. J. Phys. Chem. C 118 (12), 6307–6313 (2014).

    Article  CAS  Google Scholar 

  42. Z. Jiang, J. Xie, D. Jiang, J. Jing, and H. Qin: Facile route fabrication of nano-Ni core mesoporous silica shell particles with high catalytic activity towards 4-nitrophenol reduction. CrystEngComm 14 (14), 4601–4611 (2012).

    Article  CAS  Google Scholar 

  43. T.R. Mandlimath and B. Gopal: Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol. J. Mol. Catal. A: Chem. 350 (1–2), 9–15 (2011).

    Article  CAS  Google Scholar 

  44. L. Hu, R. Zhang, L. Wei, F. Zhang, and Q. Chen: Synthesis of FeCo nanocrystals encapsulated in nitrogen-doped graphene layers for use as highly efficient catalysts for reduction reactions. Nanoscale 7 (2), 450–454 (2015).

    Article  CAS  Google Scholar 

  45. A. Bhattacharjee and M. Ahmaruzzaman: A green approach for the synthesis of SnO2 nanoparticles and its application in the reduction of p-nitrophenol. Mater. Lett. 157, 260–264 (2015).

    Article  CAS  Google Scholar 

  46. Z. Wang, C. Xu, G. Gao, and X. Li: Facile synthesis of well-dispersed Pd-graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Adv. 4 (26), 13644–13651 (2014).

    Article  CAS  Google Scholar 

  47. Y.H. Deng, Y. Cai, Z. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang, and D.Y. Zhao: Multifunctional mesoporous composite microspheres with well-designed nanostructure: A highly integrated catalyst system. J. Am. Chem. Soc. 132 (24), 8466–8473 (2010).

    Article  CAS  Google Scholar 

  48. K.L. Wu, X.W. Wei, X.M. Zhou, D.H. Wu, X.W. Liu, Y. Ye, and Q. Wang: NiCo2 alloys: Controllable synthesis, magnetic properties, and catalytic applications in reduction of 4-nitrophenol. J. Phys. Chem. C 115 (33), 16268–16274 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support from the National Natural Science Foundation of China (Nos. 21162027 and 21261022), the Graduate Student Research Innovation Project of Xinjiang (No. XJGRI2013016), and the Outstanding Doctoral Innovation Project of Xinjiang University (XJUBSCX-2012020) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jide Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chi, L., Yang, C. et al. MOF derived porous Co@C hexagonal-shaped prisms with high catalytic performance. Journal of Materials Research 31, 3069–3077 (2016). https://doi.org/10.1557/jmr.2016.314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.314

Navigation