Skip to main content
Log in

Enhanced intrinsic photocatalytic activity of TiO2 electrospun nanofibers based on temperature assisted manipulation of crystal phase ratios

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

TiO2 nanofibers (TNFs) with different anatase/rutile phase ratios were fabricated using electrospinning technique followed by the annealing at different temperatures. The effect of annealing temperatures on their morphology, structural, and optical properties and photocatalytic activity was investigated. The photocatalytic performance of TNFs was evaluated by degradation of methyl orange (MO) in aqueous solution under the irradiation of simulated solar light. Annealing temperature significantly influenced photocatalytic degradation of MO due to the incorporation of rutile phase which suppresses recombination of photoactivated electron and hole pairs. Turnover frequency (TOF) of MO degradation was introduced to describe the intrinsic activity of TNFs. TNFs acquired best anatase/rutile phase ratio (A/R = 83/17) when annealed at 650 °C, resulting in highest TOF value 2394 h−1, two times higher as compared to P25 with similar anatase/rutile phase ratio (A/R = 85/15). Appropriate crystalline structure could be the reason for good photocatalytic activity as well as intrinsic activity of TNFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238 (5358), 37 (1972).

    Article  CAS  Google Scholar 

  2. A. Fujishima, T.N. Rao, and D.A. Tryk: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1 (1), 1 (2000).

    Article  CAS  Google Scholar 

  3. R. Michael, S.T.M. Hoffmann, W. Choi, and D.W.B. Mannt: Environmental applications of semiconductor photo-catalysis. Chem. Rev. 95 (1), 69 (1995).

    Article  Google Scholar 

  4. X. Duan, G. Wang, H. Wang, Y. Wang, C. Shen, and W. Cai: Orientable pore-size-distribution of ZnO nanostructures and their superior photocatalytic activity. CrystEngComm 12 (10), 2821 (2010).

    Article  CAS  Google Scholar 

  5. P. Ji, J. Zhang, F. Chen, and M. Anpo: Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Appl. Catal., B 85 (3–4), 148 (2009).

    Article  CAS  Google Scholar 

  6. K. Sayama, H. Hayashi, T. Arai, M. Yanagida, T. Gunji, and H. Sugihara: Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds. Appl. Catal., B 94 (1–2), 150 (2010).

    Article  CAS  Google Scholar 

  7. V.R. Reddy, D.W. Hwang, and J.S. Lee: Photocatalytic water splitting over ZrO2 prepared by precipitation method. Korean J. Chem. Eng. 20 (6), 1026 (2003).

    Article  CAS  Google Scholar 

  8. W. Bahnemann, M. Muneer, and M.M. Haque: Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal. Today 124 (3–4), 133 (2007).

    Article  CAS  Google Scholar 

  9. K. Nakata and A. Fujishima: TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol., C 13 (3), 169 (2012).

    Article  CAS  Google Scholar 

  10. L. Liu, H. Zhao, J.M. Andino, and Y. Li: Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2 (8), 1817 (2012).

    Article  CAS  Google Scholar 

  11. M.A. Fox and M.T. Dulay: Hetrogeneous photocatalysis. Chem. Rev. 93 (1), 341 (1993).

    Article  CAS  Google Scholar 

  12. J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, and A.B. Walker: Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping and transfer of electrons. J. Am. Chem. Soc. 130 (40), 13364 (2008).

    Article  CAS  Google Scholar 

  13. L. Mai, X. Tian, X. Xu, L. Chang, and L. Xu: Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 114 (23), 11828 (2014).

    Article  CAS  Google Scholar 

  14. Z. Zheng, Y. Cheng, X. Yan, R. Wang, and P. Zhang: Enhanced electrochemical properties of graphene-wrapped ZnMn2O4 nanorods for lithium-ion batteries. J. Mater. Chem. A 2 (1), 149 (2014).

    Article  CAS  Google Scholar 

  15. V. Aravindan, J. Sundaramurthy, P.S. Kumar, Y.S. Lee, S. Ramakrishna, and S. Madhavi: Electrospun nanofibers: A perspective electro-active material for constructing high performance Li-ion batteries. Chem. Commun. 51 (12), 2225 (2015).

    Article  CAS  Google Scholar 

  16. Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, and Y.Q. Yan: One-dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15 (5), 353 (2003).

    Article  CAS  Google Scholar 

  17. J. Wang, G. Yang, L. Wang, and W. Yan: Fabrication of a well-aligned TiO2 nanofiberous membrane by modified parallel electrode configuration with enhanced photocatalytic performance. RSC Adv. 6 (37), 31476 (2016).

    Article  CAS  Google Scholar 

  18. D. Li and Y. Xia: Fabrication of titania nanofibers by electrospinning. Nano Lett. 3 (4), 555 (2003).

    Article  CAS  Google Scholar 

  19. W. Nuansing, S. Ninmuang, W. Jarernboon, S. Maensiri, and S. Seraphin: Structural characterization and morphology of electrospun TiO2 nanofibers. Mater. Sci. Eng., B 131 (1–3), 147 (2006).

    Article  CAS  Google Scholar 

  20. M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.Q. Zhang, S.S. Al-Deyab, and Y. Lai: A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 4 (18), 6772 (2016).

    Article  CAS  Google Scholar 

  21. J.W. Jung, C.L. Lee, S. Yu, and I.D. Kim: Electrospun nanofibers as a platform for advanced secondary batteries: A comprehensive review. J. Mater. Chem. A 4 (3), 703–750 (2016).

    Article  CAS  Google Scholar 

  22. X. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev. 107 (7), 2891 (2007).

    Article  CAS  Google Scholar 

  23. P.S. Kumar, J. Sundaramurthy, S. Sundarrajan, V.J. Babu, G. Singh, S.I. Allakhverdiev, and S. Ramakrishna: Hierarchical electrospun nanofibers for energy harvesting production and environmental remediation. Energy Environ. Sci. 7 (10), 3192 (2014).

    Article  CAS  Google Scholar 

  24. C. Tealdi, E. Quartarone, P. Galinetto, M.S. Grandi, and P. Mustarelli: Flexible deposition of TiO2 electrodes for photocatalytic applications: Modulation of the crystal phase as a function of the layer thickness. J. Solid State Chem. 199, 1 (2013).

    Article  CAS  Google Scholar 

  25. W. Sun, H. Liu, J. Hu, and J. Li: Controllable synthesis and morphology-dependent photocatalytic performance of anatase TiO2 nanoplates. RSC Adv. 5 (1), 513 (2015).

    Article  CAS  Google Scholar 

  26. H. Hou, L. Wang, F. Gao, G. Wei, J. Zheng, B. Tang, and W. Yang: Hierarchically porous TiO2/SiO2 fibers with enhanced photocatalytic activity. RSC Adv. 4 (38), 19939 (2014).

    Article  CAS  Google Scholar 

  27. D. Ma, L.S. Schadler, R.W. Siegel, and J. Hong: Preparation and structure investigation of nanoparticle-assembled titanium dioxide microtubes. Appl. Phys. Lett. 83 (9), 1839 (2003).

    Article  CAS  Google Scholar 

  28. Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen, and S.X. Wang: Preparation and photoluminescence of highly ordered TiO2 nanowires arrays. Appl. Phys. Lett. 78 (8), 1125 (2001).

    Article  CAS  Google Scholar 

  29. R.A. Spurr and H. Myers: Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal. Chem. 29 (6), 760 (1957).

    Article  CAS  Google Scholar 

  30. B.D. Cullity: Elements of X-ray Diffraction (Addison–Wesley, Reading, MA, 1978).

    Google Scholar 

  31. Q. Wan, T.H. Wang, and J.C. Zhao: Enhanced photocatalytic activity of ZnO nanotetrapods. Appl. Phys. Lett. 87 (8), 083105 (2005).

    Article  CAS  Google Scholar 

  32. C. Zhou, Y. Chen, Z. Guo, X. Wang, and Y. Yang: Promoted aerobic oxidation of benzyl alcohol on CNT supported platinum by iron oxide. Chem. Commun. 47 (26), 7473 (2011).

    Article  CAS  Google Scholar 

  33. S. Bakardjieva, J. Subrt, V. Stengl, M.J. Dianez, and M. Sayagues: Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal., B 58 (3–4), 193 (2005).

    Article  CAS  Google Scholar 

  34. Z.M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ramakrishna: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63 (15), 2223 (2003).

    Article  CAS  Google Scholar 

  35. L.H. Edelson and A.M. Glaeser: Role of particle substructure in the sintering of monosized titania. J. Am. Ceram. Soc. 71 (4), 225 (1988).

    Article  CAS  Google Scholar 

  36. H. Zhang and J.F. Banfield: Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. J. Mater. Res. 15 (2), 437–448 (2000).

    Article  CAS  Google Scholar 

  37. N.T. Nolan, M.K. Seery, S.J. Hinder, L.F. Healy, and S.C. Pillai: A systematic study of the effect of silver on the chelation of formic acid to a titanium precursor and the resulting effect on the anatase to rutile transformation of TiO2. J. Phys. Chem. C 114 (30), 13026 (2010).

    Article  CAS  Google Scholar 

  38. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, and A.A. Sokol: Band alignment of rutile and anatse TiO2. Nat. Mater. 12 (9), 798–801 (2013).

    Article  CAS  Google Scholar 

  39. D. Vu, X. Li, Z. Li, and C. Wang: Phase-structure effects of electrospun TiO2 nanofiber membrane on As(III) adsorption. J. Chem. Eng. Data 58 (1), 71 (2013).

    Article  CAS  Google Scholar 

  40. H. Li, W. Zhang, B. Li, and W. Pan: Diameter dependent photocatalytic activity of electrospun TiO2 nanofiber. J. Am. Ceram. Soc. 93 (9), 2503 (2010).

    Article  CAS  Google Scholar 

  41. E. Kordouli, V. Dracopoulos, T. Vaimakis, K. Bourikas, A. Lycourghiotis, and C. Kordulis: Comparative study of phase transition and textural changes upon calcination of two commercial titania samples: A pure anatase and a mixed anatase-rutile. J. Solid State Chem. 232, 42 (2015).

    Article  CAS  Google Scholar 

  42. H. Li, W. Zhang, and W. Pan: Enhanced photocatalytic activity of electrospun TiO2 nanofibers with optimal anatase/rutile ratio. J. Am. Ceram. Soc. 94 (10), 3184 (2011).

    Article  CAS  Google Scholar 

  43. C.C. Pei and W.W.F. Leung: Enhanced photocatalytic activity of electrospun TiO2/ZnO nanofibers with optimal anatase/rutile ratio. Catal. Commun. 37, 100 (2013).

    Article  CAS  Google Scholar 

  44. G. Li and K.A. Gray: The solid–solid interface: Explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem. Phys. 339 (1–3), 173 (2007).

    Article  CAS  Google Scholar 

  45. M. Boudart: Turnover rates in heterogeneous catalysis. Chem. Rev. 95 (3), 661 (1995).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was supported partially by National Natural Science Foundation of China (No. 21503187 and 21301153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunmei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, A., Qi, H., Fang, Y. et al. Enhanced intrinsic photocatalytic activity of TiO2 electrospun nanofibers based on temperature assisted manipulation of crystal phase ratios. Journal of Materials Research 31, 3036–3043 (2016). https://doi.org/10.1557/jmr.2016.309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.309

Navigation