Skip to main content

Advertisement

Log in

Enhancing electrocatalytic activity of bifunctional Ni3Se2 for overall water splitting through etching-induced surface nanostructuring

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Electrocatalysts for oxygen evolution reaction (OER) has been at the center of attention for water splitting reactions. In this article we have presented a methodology to significantly improve the OER catalytic efficiency of electrodeposited Ni3Se2 films. Specifically, the pristine Ni3Se2 on surface nanostructuring induced through electrochemical etching shows a remarkable decrease of overpotential (@10 mA cm−2) to 190 mV, making it as one of the best OER elecrocatalyst known till date. Through detailed structural and morphological characterization of the catalyst film, we have learnt that such enhancement is possibly caused by the increased surface roughness factor and electrochemically active surface area of the etched film. The morphology of the film also changed from smooth to rough on etching further supporting the enhanced catalytic activity. Detailed characterization also revealed that the composition of the film was unaltered on etching. Ni3Se2 film was also active for HER in alkaline medium making this a bifunctional catalyst capable of full water splitting in alkaline electrolyte with a cell voltage of 1.65 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. C.C.L. McCrory, S. Jung, J.C. Peters, and T.F. Jaramillo: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977 (2013).

    Article  CAS  Google Scholar 

  2. J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, and J.K.J. Norskov: Electrolysis of water on oxide surfaces. Electroanal. Chem. 607, 83 (2007).

    Article  CAS  Google Scholar 

  3. Y. Lee, J. Suntivich, K.J. May, E.E. Perry, and Y.S. Horn: Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399 (2012).

    Article  CAS  Google Scholar 

  4. M. Gong and H. Dai: A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 8, 23 (2015).

    Article  CAS  Google Scholar 

  5. H.N. Seiger and R.C. Shair: Oxygen evolution from heavily doped nickel oxide electrodes. J. Electrochem. Soc. 108, C163 (1961).

    Article  Google Scholar 

  6. Y.G. Li, P. Hasin, and Y.Y. Wu: NixCo3−xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 22, 1926 (2010).

    Article  CAS  Google Scholar 

  7. G.P. Gardner, Y.B. Go, D.M. Robinson, P.F. Smith, J. Hadermann, A. Abakumov, M. Greenblatt, and G.C. Dismukes: Structural requirements in lithium cobalt oxides for the catalytic oxidation of water. Angew. Chem., Int. Ed. 51, 1616 (2012).

    Article  CAS  Google Scholar 

  8. J. Landon, E. Demeter, N. Inoglu, C. Keturakis, I.E. Wachs, R. Vasic, A.I. Frenkel, and J.R. Kitchin: Spectroscopic characterization of mixed Fe−Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2, 1793 (2012).

    Article  CAS  Google Scholar 

  9. M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai: An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452 (2013).

    Article  CAS  Google Scholar 

  10. S. Chen and S.Z. Qiao: Hierarchically porous nitrogen-doped graphene–NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting materia. ACS Nano. 7, 10190 (2013).

    Article  CAS  Google Scholar 

  11. S. Chen, J.J. Duan, M. Jaroniec, and S.Z. Qiao: Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 52, 13567 (2013).

    Article  CAS  Google Scholar 

  12. M.R. Gao, Y.F. Xu, J. Jiang, Y.R. Zheng, and S.H. Yu: Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. J. Am. Chem. Soc. 134, 2930 (2012).

    Article  CAS  Google Scholar 

  13. M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, and Y. Yan: Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 136, 7077 (2014).

    Article  CAS  Google Scholar 

  14. Z. Zhao, H. Wu, H. He, X. Xu, and Y. Jin: Self-standing non-noble metal (Ni–Fe) oxide nanotube array anode catalysts with synergistic reactivity for high-performance water oxidation. J. Mater. Chem. A 3, 7179 (2015).

    Article  CAS  Google Scholar 

  15. Z. Zhao, H. Wu, H. He, X. Xu, and Y. Jin: A high-performance binary Ni–Co hydroxide-based water oxidation electrode with three-dimensional coaxial nanotube array structure. Adv. Funct. Mater. 24, 4698 (2014).

    Article  CAS  Google Scholar 

  16. J. Jiang, A. Zhang, L. Li, and L. Ai: Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J. Power Sources 278, 445 (2015).

    Article  CAS  Google Scholar 

  17. M.R. Gao, Y.F. Xu, J. Jiang, and S.H. Yu: Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42, 2986 (2013).

    Article  CAS  Google Scholar 

  18. M.D. Merrill and R.C. Dougherty: Metal oxide catalysts for the evolution of O2 from H2O. J. Phys. Chem. C 112, 3655 (2008).

    Article  CAS  Google Scholar 

  19. X. Li, J. Yu, J. Low, Y. Fang, J. Xiaoc, and X. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).

    Article  CAS  Google Scholar 

  20. X. Yan, K. Li, L. Lyu, F. Song, J. He, D. Niu, L. Liu, X. Hu, and X. Chen: From water oxidation to reduction: Transformation from NixCo3−xO4 nanowires to NiCo/NiCoOx heterostructures. ACS Appl. Mater. Interfaces 8, 3208 (2016).

    Article  CAS  Google Scholar 

  21. H. Cheng, Y. Su, P. Kuang, G. Chen, and Z. Liu: Hierarchical NiCo2O4 nanosheet-decorated carbon nanotubes towards highly efficient electrocatalyst for water oxidation. J. Mater. Chem. A 3, 19314 (2015).

    Article  CAS  Google Scholar 

  22. Q. Xu, Y. Su, H. Wu, H. Cheng, Y. Guo, N. Li, and Z. Liu: Effect of morphology of Co3O4 for oxygen evolution reaction in alkaline water electrolysis. Curr. Nanosci. 11, 107 (2015).

    Article  CAS  Google Scholar 

  23. X. Yan, L. Tian, and X. Chen: Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. J. Power Sources 300, 336 (2015).

    Article  CAS  Google Scholar 

  24. Z. Pu, Y. Luo, A.M. Asiri, and X. Sun: Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film. ACS Appl. Mater. Interfaces 8, 4718 (2016).

    Article  CAS  Google Scholar 

  25. H. Wang, H. Lee, Y. Deng, Z. Lu, P.C. Hsu, Y. Liu, D. Lin, and Y. Cui: Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015).

    Article  CAS  Google Scholar 

  26. A.T. Swesi, J. Masud, and M. Nath: Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ. Sci. 9, 1771 (2016).

    Article  CAS  Google Scholar 

  27. J. Masud, A.T. Swesi, W.P. Liyanage, and M. Nath: Cobalt selenide nanostructures: An efficient bifunctional catalyst with high current density at low coverage. ACS Appl. Mater. Interfaces 8, 17292 (2016).

    Article  CAS  Google Scholar 

  28. G. Chen, T. Ma, Z. Liu, N. Li, Y. Su, K. Davey, and S. Qiao: Efficient and stable bifunctional electrocatalysts Ni/Ni x M y (M = P, S) for overall water splitting. Adv. Funct. Mater. 26, 3314 (2016).

    Article  CAS  Google Scholar 

  29. C. Schuster, M. Gatti, and A. Rubio: Electronic and magnetic properties of NiS2, NiSSe and NiSe2 by a combination of theoretical methods. Eur. Phys. J. B 85, 325 (2012).

    Article  CAS  Google Scholar 

  30. F.A. Rasmussen and K.S. Thygesen: Computational 2D materials database: Electronic structure of transition metal dichalcogenides and oxides. J. Phys. Chem. C 119, 13169–13174 (2015).

    Article  CAS  Google Scholar 

  31. I.H. Kwak, H.S. Im, D.M. Jang, Y.W. Kim, K. Park, Y.R. Lim, E.H. Cha, and J. Park: CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 8, 5327 (2016).

    Article  CAS  Google Scholar 

  32. D. Kong, J.J. Cha, H. Wang, H.R. Lee, and Y. Cui: First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6, 3553 (2013).

    Article  CAS  Google Scholar 

  33. C. Tang, N. Cheng, Z. Pu, W. Xing, and X. Sun: NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 54, 9351 (2015).

    Article  CAS  Google Scholar 

  34. W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, and J. Wang: Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 52, 1486 (2016).

    Article  CAS  Google Scholar 

  35. J. Luo, J-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.G. Park, S.D. Tilley, H. Fan, and M. Grätzel: Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345, 1593 (2014).

    Article  CAS  Google Scholar 

  36. H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, and Y. Wang: In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 137, 2688 (2015).

    Article  CAS  Google Scholar 

  37. Y. Yang, H. Fei, G. Ruan, and J.M. Tour: Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv. Mater. 27, 3175 (2015).

    Article  CAS  Google Scholar 

  38. N. Jiang, B. You, M. Sheng, and Y. Sun: Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem., Int. Ed. 54, 6251 (2015).

    Article  CAS  Google Scholar 

  39. L.A. Stern, L. Feng, F. Song, and X. Hu: Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8, 2347 (2015).

    Article  CAS  Google Scholar 

  40. M. Ledendecker, S.K. Calderon, C. Papp, H.P. Steinruck, M. Antonietti, and M. Shalom: The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem., Int. Ed. 127, 12538 (2015).

    Article  Google Scholar 

  41. T. Liu, Q. Liu, A.M. Asiri, Y. Luo, and X. Sun: An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chem. Commun. 51, 16683 (2015).

    Article  CAS  Google Scholar 

  42. X.H. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y.X. Tong, and Y. Li: H-TiO2@MnO2//H-TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 25, 267 (2013).

    Article  CAS  Google Scholar 

  43. R.P. Agarwala and A.P.B. Sinha: Crystal structure of nickel selenide—Ni3Se2. Z. Anorg. Allg. Chem. 289, 203 (1957).

    Article  CAS  Google Scholar 

  44. S. Zhang: Nanostructured Thin Films and Coatings: Mechanical Properties (CRC Press, Boca Raton, 2010).

    Book  Google Scholar 

  45. W. Kreuter and H. Hofmann: Electrolysis: The important energy transformer in a world of sustainable energy. Int. J. Hydrogen Energy 23, 661 (1998).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was funded through financial support from ACS PRF (grant #54793- ND10) and Energy Research and Development Center (ERDC) at Missouri S&T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manashi Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swesi, A.T., Masud, J. & Nath, M. Enhancing electrocatalytic activity of bifunctional Ni3Se2 for overall water splitting through etching-induced surface nanostructuring. Journal of Materials Research 31, 2888–2896 (2016). https://doi.org/10.1557/jmr.2016.301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.301

Navigation