Skip to main content

Advertisement

Log in

Antibacterial metal ion release from diamond-like carbon modified surfaces for novel multifunctional implant materials

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The aim of this study was the synthesis of hard and low-abrasive novel implant materials with built-in time-dependent antibacterial properties, which can be tailored by a well-defined time-dependent and finite release of metal ions. We were able to synthesize such smart implant surfaces employing ECR (electron cyclotron resonance)-plasma on typical titanium implant material by transforming a polymer film into diamond-like carbon (DLC) which contains metal nanoparticles as reservoirs for controlled metal ion release. We found that the amount of released antibacterial metal ions is a biexponential function of time with a high release rate during the first few hours followed by a decreased ion release rate within the following days. To describe our experimental findings, we developed a kinetic model assuming that both nanoparticles near the surface and nanoparticles in the DLC bulk contribute to the total amount of ions released with different time constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. L. Pauksch, M. Rohnke, R. Schnettler, and K.S. Lips: Silver nanoparticles do not alter human osteoclastogenesis but induce cellular uptake. Toxicol. Rep. 1, 900–908 (2014).

    Article  CAS  Google Scholar 

  2. K. Grandfield: Bone, implants, and their interfaces. Phys. Today 68, 40–45 (2015).

    Article  Google Scholar 

  3. D.R. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R. de Camargo, and D.B. Barbosa: The growing importance of materials that prevent microbial adhesion: Antimicrobial effect of medical devices containing silver. Int. J. Antimicrob. Agents 34, 103–110 (2009).

    Article  CAS  Google Scholar 

  4. C.P. McCoy, R.A. Craig, S.M. McGlinchey, L. Carson, D.S. Jones, and S.P. Gorman: Surface localisation of photosensitisers on intraocular lens biomaterials for prevention of infectious endophthalmitis and retinal protection. Biomaterials 33, 7952–7958 (2012).

    Article  CAS  Google Scholar 

  5. M.T. Mohammed, Z.A. Khan, and A.N. Siddiquee: Surface modifications of titanium materials for developing corrosion behavior in human body environment: A review. Procedia Mater. Sci. 6, 1610–1618 (2014).

    Article  CAS  Google Scholar 

  6. K. Gutensohn, C. Beythien, J. Bau, T. Fenner, P. Grewe, R. Koester, K. Padmanaban, and P. Kuehnl: In vitro analyses of diamond-like carbon coated stents. Thromb. Res. 99, 577–585 (2000).

    Article  CAS  Google Scholar 

  7. F.R. Marciano, D.A. Lima-Oliveira, N.S. Da-Silva, A.V. Diniz, E.J. Corat, and V.J. Trava-Airoldi: Antibacterial activity of DLC films containing TiO2 nanoparticles. J. Colloid Interface Sci. 340, 87–92 (2009).

    Article  CAS  Google Scholar 

  8. F. Schwarz and B. Stritzker: Plasma immersion ion implantation of polymers and silver–polymer nano composites. Surf. Coat. Technol. 204, 1875–1879 (2010).

    Article  CAS  Google Scholar 

  9. E.A. Elkhawass, M.E. Mohallal, and M.F.M. Soliman: Acute toxicity of different sizes of silver nanoparticles intraperitoneally injected in balb/c mice using two toxicological methods. Int. J. Pharm. Pharm. Sci. 7, 94–99 (2015).

    CAS  Google Scholar 

  10. C. Damm and H. Münstedt: Kinetic aspects of the silver ion release from antimicrobial polyamide/silver nanocomposites. Appl. Phys. A 91, 479–486 (2008).

    Article  CAS  Google Scholar 

  11. H. Ma, P.L. Williams, and S.A. Diamond: Ecotoxicity of manufactured ZnO nanoparticles—A review. Environ. Pollut. 172, 76–85 (2013).

    Article  CAS  Google Scholar 

  12. H.L. Karlsson, P. Cronholm, Y. Hedberg, M. Tornberg, L. De Battice, S. Svedhem, and I.O. Wallinder: Cell membrane damage and protein interaction induced by copper containing nanoparticles—Importance of the metal release process. Toxicology 313, 59–69 (2013).

    Article  CAS  Google Scholar 

  13. W. Salem, D.R. Leitner, F.G. Zingl, G. Schratter, R. Prassl, W. Goessler, J. Reidl, and S. Schild: Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int. J. Med. Microbiol. 305, 85–95 (2015).

    Article  CAS  Google Scholar 

  14. H. Ma, P.L. Williams, and S.a. Diamond: Ecotoxicity of manufactured ZnO nanoparticles—A review. Environ. Pollut. 172, 76–85 (2013).

    Article  CAS  Google Scholar 

  15. E.N. Sowa-Söhle, A. Schwenke, P. Wagener, A. Weiss, H. Wiegel, C.L. Sajti, A. Haverich, S. Barcikowski, and A. Loos: Antimicrobial efficacy, cytotoxicity, and ion release of mixed metal (Ag, Cu, Zn, Mg) nanoparticle polymer composite implant material. BioNanoMaterials 14, 217–227 (2013).

    Article  Google Scholar 

  16. K. Chaloupka, Y. Malam, and A.M. Seifalian: Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 28, 580–588 (2010).

    Article  CAS  Google Scholar 

  17. R.P. Allaker: The use of nanoparticles to control oral biofilm formation. J. Dent. Res. 89, 1175–1186 (2010).

    Article  CAS  Google Scholar 

  18. B. Aydin Sevinç and L. Hanley: Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res., Part B 94B, 22–31 (2010).

    Google Scholar 

  19. F.P. Schwarz, I. Hauser-Gerspach, T. Waltimo, and B. Stritzker: Antibacterial properties of silver containing diamond like carbon coatings produced by ion induced polymer densification. Surf. Coat. Technol. 205, 4850–4854 (2011).

    Article  CAS  Google Scholar 

  20. W. Zhang, Y. Zhang, J. Ji, Q. Yan, A. Huang, and P.K. Chu: Antimicrobial polyethylene with controlled copper release. J. Biomed. Mater. Res., Part A 83A, 838–844 (2007).

    Article  CAS  Google Scholar 

  21. P.K. Chu: Applications of plasma-based technology to microelectronics and biomedical engineering. Surf. Coat. Technol. 203, 2793–2798 (2009).

    Article  CAS  Google Scholar 

  22. G. Francz, A. Schröder, and R. Hauert: Surface analysis and bioreactions of Ti- and V-containing a-C: H. Surf. Interface Anal. 28, 3–7 (1999).

    Article  CAS  Google Scholar 

  23. R. Hauert: A review of modified DLC coatings for biological applications. Diamond Relat. Mater. 12, 583–589 (2003).

    Article  CAS  Google Scholar 

  24. M.M. Demir, R. Munoz-Espi, I. Lieberwirth, and G. Wegner: Precipitation of monodisperse ZnO nanocrystals via acid-catalyzed esterification of zinc acetate. J. Mater. Chem. 16, 2940 (2006).

    Article  CAS  Google Scholar 

  25. R. Herrmann, F.J. García-García, and A. Reller: Rapid degradation of zinc oxide nanoparticles by phosphate ions. Beilstein J. Nanotechnol. 5, 2007–2015 (2014).

    Article  CAS  Google Scholar 

  26. P.P. Chowdury, A.H. Shaik, and J. Chakraborty: Preparation of stable sub 10 nm copper nanopowders redispersible in polar and non-polar solvents. Colloids Surf., A 466, 189–196 (2015).

    Article  Google Scholar 

  27. F.P. Schwarz: Ph.D. thesis, University of Augsburg, (2010).

  28. J. Robertson: Diamond-like amorphous carbon. Mater. Sci. Eng., R 37, 129–281 (2002).

    Article  Google Scholar 

  29. W. Zhang, Y. Yao, N. Sullivan, and Y.S. Chen: Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ. Sci. Technol. 45, 4422–4428 (2011).

    Article  CAS  Google Scholar 

  30. E.A. Meulenkamp: Size dependence of the dissolution of ZnO nanoparticles. J. Phys. Chem. B 102, 7764–7769 (1998).

    Article  CAS  Google Scholar 

  31. C-M. Ho, S.K-W. Yau, C-N. Lok, M-H. So, and C-M. Che: Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: A kinetic and mechanistic study. Chem.–Asian J. 5, 285–293 (2010).

    Article  CAS  Google Scholar 

  32. T. Visuri and O. Kiviluoto: Arthroscopic volume of the knee joint in young male adults. Scand. J. Rheumatol. 15, 251–254 (1986).

    Article  CAS  Google Scholar 

  33. S. Chernousova and M. Epple: Silver as antibacterial Agent: Ion, nanoparticle, and metal. Angew. Chem., Int. Ed. 52, 1636–1653 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors like to thank the “Deutsche Forschungsgemeinschaft (DFG)” for the financial support of this research work in form of the “Erkenntnistransferprojekt Antibakterielle und abriebarme Beschichtung von Gleitflächen in orthopädischen Implantaten” and Aesculap AG Tuttlingen for providing required materials. CW likes to acknowledge funding by Nanosystems Initiative Munich (NIM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Westerhausen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchegger, S., Vogel, C., Herrmann, R. et al. Antibacterial metal ion release from diamond-like carbon modified surfaces for novel multifunctional implant materials. Journal of Materials Research 31, 2571–2577 (2016). https://doi.org/10.1557/jmr.2016.275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.275

Navigation