Skip to main content
Log in

3D polarization texture of a symmetric 4-fold flux closure domain in strained ferroelectric PbTiO3 films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Although the strong coupling of polarization to spontaneous strain in ferroelectrics would impart a flux-closure with severe disclination strains, recent studies have successfully stabilized such a domain via a nano-scaled multi-layer growth. Nonetheless, the detailed distributions of polarizations in three-dimensions (3D) and how the strains inside a flux closure affect the structures of domain walls are still less understood. Here we report a 3D polarization texture of a 4-fold flux closure domain identified in tensile strained ferroelectric PbTiO3/SrTiO3 multilayer films. Ferroelectric displacement analysis based on aberration-corrected scanning transmission electron microscopic imaging reveals highly inhomogeneous strains with strain gradient above 107/m. These giant disclination strains significantly broaden the 90° domain walls, while the flexoelectric coupling at 180° domain wall is less affected. The present observations are helpful for understanding the basics of topological dipole textures and indicate novel applications of ferroelectrics through engineering strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono: Magnetic vortex core observation in circular dots of permalloy. Science 289, 930 (2000).

    CAS  Google Scholar 

  2. U.K. Rößler, A.N. Bogdanov, and C. Pfleiderer: Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797 (2006).

    Google Scholar 

  3. M. Uchida, Y. Onose, Y. Matsui, and Y. Tokura: Real-space observation of helical spin order. Science 311, 359 (2006).

    CAS  Google Scholar 

  4. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura: Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901 (2010).

    CAS  Google Scholar 

  5. N. Romming, C. Hanneken, M. Menzel, J.E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger: Writing and deleting single magnetic skyrmions. Science 341, 636 (2013).

    CAS  Google Scholar 

  6. N. Nagaosa and Y. Tokura: Topological properties and dynamics of magnetic skyrmions. Nature Nanotech. 8, 899 (2013).

    CAS  Google Scholar 

  7. G. Catalan, J. Seidel, R. Ramesh, and J.F. Scott: Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012).

    CAS  Google Scholar 

  8. R.E. Cohen: Origin of ferroelectricity in perovskite oxides. Nature 358, 136 (1992).

    CAS  Google Scholar 

  9. J.F. Scott: Applications of modern ferroelectrics. Science 315, 954 (2007).

    CAS  Google Scholar 

  10. N.A. Spaldin: Analogies and differences between ferroelectrics and ferromagnets. In Physics of Ferroelectrics a Modern Perspective. Topics in Applied Physics, Vol. 105, K.M. Rabe, C.H. Ahn and J-M. Triscone eds.; Springer-Verlag, Berlin Heidelberg, 2007; pp. 175–218.

    Google Scholar 

  11. I.I. Naumov, L. Bellaiche, and H. Fu: Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737 (2004).

    CAS  Google Scholar 

  12. S. Prosandeev and L. Bellaiche: Characteristics and signatures of dipole vortices in ferroelectric nanodots: First-principles-based simulations and analytical expressions. Phys. Rev. B: Condens. Matter Mater. Phys. 75, 094102 (2007).

    Google Scholar 

  13. P. Aguado-Puente and J. Junquera: Ferromagnetic like closure domains in ferroelectric ultrathin films: First-principles simulations. Phys. Rev. Lett. 100, 177601 (2008).

    Google Scholar 

  14. W.J. Chen, Y. Zheng, and B. Wang: Vortex domain structure in ferroelectric nanoplatelets and control of its transformation by mechanical load. Sci. Rep. 2 (796), 00796 (2012).

    CAS  Google Scholar 

  15. Z.D. Zhou and D.Y. Wu: Domain structures of ferroelectric films under different electrical boundary conditions. AIP Adv. 5, 107206 (2015).

    Google Scholar 

  16. C. Kittel: Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21, 541 (1949).

    Google Scholar 

  17. A. Schilling, D. Byrne, G. Catalan, K.G. Webber, Y.A. Genenko, G.S. Wu, J.F. Scott, and J.M. Gregg: Domains in ferroelectric nanodots. Nano Lett. 9, 3359 (2009).

    CAS  Google Scholar 

  18. L.J. McGilly, A. Schilling, and J.M. Gregg: Domain bundle boundaries in single crystal BaTiO3 lamellae: Searching for naturally forming dipole flux-closure/quadrupole chains. Nano Lett. 10, 4200 (2010).

    CAS  Google Scholar 

  19. R.G.P. McQuaid, L.J. McGilly, P. Sharma, A. Gruverman, and J.M. Gregg: Mesoscale flux-closure domain formation in single-crystal BaTiO3. Nat. Commun. 2 (404), 1413 (2011).

    Google Scholar 

  20. L.J. McGilly and J.M. Gregg: Polarization closure in PbZr(0.42)Ti(0.58)O3 nanodots. Nano Lett. 11, 4490 (2011).

    CAS  Google Scholar 

  21. L-W. Chang, V. Nagarajan, J.F. Scott, and J.M. Gregg: Self-similar nested flux closure structures in a tetragonal ferroelectric. Nano Lett. 13, 2553 (2013).

    CAS  Google Scholar 

  22. C.L. Jia, K.W. Urban, M. Alexe, D. Hesse, and I. Vrejoiu: Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420 (2011).

    CAS  Google Scholar 

  23. C.T. Nelson, B. Winchester, Y. Zhang, S-J. Kim, A. Melville, C. Adamo, C.M. Folkman, S-H. Baek, C-B. Eom, D.G. Schlom, L-Q. Chen, and X. Pan: Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828 (2011).

    CAS  Google Scholar 

  24. Y.L. Tang, Y.L. Zhu, X.L. Ma, A.Y. Borisevich, A.N. Morozovska, E.A. Eliseev, W.Y. Wang, Y.J. Wang, Y.B. Xu, Z.D. Zhang, and S.J. Pennycook: Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547 (2015).

    CAS  Google Scholar 

  25. A.K. Yadav, C.T. Nelson, S.L. Hsu, Z. Hong, J.D. Clarkson, C.M. Schlepütz, A.R. Damodaran, P. Shafer, E. Arenholz, L.R. Dedon, D. Chen, A. Vishwanath, A.M. Minor, L.Q. Chen, J.F. Scott, L.W. Martin, and R. Ramesh: Observation of polar vortices in oxide superlattices. Nature 530, 198 (2016).

    CAS  Google Scholar 

  26. G. Catalan, A. Lubk, A.H.G. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens, G. Rijnders, D.H.A. Blank, and B. Noheda: Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 10, 963–967 (2011).

    CAS  Google Scholar 

  27. S.M. Anthony and S. Granick: Image analysis with rapid and accurate two-dimensional Gaussian fitting. Langmuir 25, 8152–8160 (2009).

    CAS  Google Scholar 

  28. C-L. Jia, V. Nagarajan, J-Q. He, L. Houben, T. Zhao, R. Ramesh, K. Urban, and R. Waser: Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 6, 64 (2007).

    CAS  Google Scholar 

  29. Y.L. Li, S.Y. Hu, Z.K. Liu, and L.Q. Chen: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 50, 395 (2002).

    CAS  Google Scholar 

  30. L.Q. Chen: Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review. J. Am. Ceram. Soc. 91, 1835–1844 (2008).

    CAS  Google Scholar 

  31. Y.L. Li, S.Y. Hu, Z.K. Liu, and L.Q. Chen: Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl. Phys. Lett. 81, 427–429 (2002).

    CAS  Google Scholar 

  32. M.J. Haun: Ph.D Thesis, The Pennsylvania State University, 1988.

  33. G. Sheng, Y.L. Li, J.X. Zhang, S. Choudhury, Q.X. Jia, V. Gopalan, D.G. Schlom, Z.K. Liu, and L.Q. Chen: A modified Landau–Devonshire thermodynamic potential for strontium titanate. Appl. Phys. Lett. 96, 232902 (2010).

    Google Scholar 

  34. J.J. Wang, X.Q. Ma, Q. Li, J. Britson, and L.Q. Chen: Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity. Acta Mater. 61, 7591–7603 (2013).

    CAS  Google Scholar 

  35. L.Q. Chen and J. Shen: Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108, 147–158 (1998).

    CAS  Google Scholar 

  36. M.J. Hÿtch, E. Snoeck, and R. Kilaas: Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Google Scholar 

  37. Y.L. Tang, Y.L. Zhu, and X.L. Ma: On the benefit of aberration-corrected HAADF-STEM for strain determination and its application to tailoring ferroelectric domain patterns. Ultramicroscopy 160, 57–63 (2016).

    CAS  Google Scholar 

  38. C. Kittel: Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965 (1946).

    CAS  Google Scholar 

  39. D.J. Srolovitz and J.F. Scott: Clock-model description of incommensurate ferroelectric films and of nematic-liquid-crystal films. Phys. Rev. B: Condens. Matter Mater. Phys. 34, 1815 (1986).

    CAS  Google Scholar 

  40. N. Balke, S. Choudhury, S. Jesse, M. Huijben, Y.H. Chu, A.P. Baddorf, L.Q. Chen, R. Ramesh, and S.V. Kalinin: Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4, 868–875 (2009).

    CAS  Google Scholar 

  41. J. Slutsker, A. Artemev, and A. Roytburd: Phase-field modeling of domain structure of confined nanoferroelectrics. Phys. Rev. Lett. 100, 087602 (2008).

    Google Scholar 

  42. D. Lee, H. Lu, Y. Gu, S-Y. Choi, S-D. Li, S. Ryu, T.R. Paudel, K. Song, E. Mikheev, S. Lee, S. Stemmer, D.A. Tenne, S.H. Oh, E.Y. Tsymbal, X. Wu, L-Q. Chen, A. Gruverman, and C.B. Eom: Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349, 1314 (2015).

    CAS  Google Scholar 

  43. A.K. Tagantsev, L.E. Cross, and J. Fousek: Chapter 6. In Domains in Ferroic Crystals and Thin Films. (Springer, New York, 2010); pp. 300–304.

    Google Scholar 

  44. P.V. Yudin, A.K. Tagantsev, E.A. Eliseev, A.N. Morozovska, and N. Setter: Bichiral structure of ferroelectric domain walls driven by flexoelectricity. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 134102 (2012).

    Google Scholar 

  45. E.A. Eliseev, P.V. Yudin, S.V. Kalinin, N. Setter, A.K. Tagantsev, and A.N. Morozovska: Structural phase transitions and electronic phenomena at 180-degree domain walls in rhombohedral BaTiO3. Phys. Rev. B: Condens. Matter Mater. Phys. 87, 054111 (2013).

    Google Scholar 

  46. B. Meyer and D. Vanderbilt: Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 104111 (2002).

    Google Scholar 

  47. J.F. Nye: Physical Properties of Crystals: Their Representation by Tensors and Matrices (Clarendon Press, Oxford, 1985).

    Google Scholar 

  48. A.L. Roitburd: Equilibrium structure of epitaxial layers. Phys. Status Solidi A 37, 329 (1976).

    Google Scholar 

  49. A.K. Tagantsev, G. Gerra, and N. Setter: Short-range and long-range contributions to the size effect in metal-ferroelectric-metal heterostructures. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 174111 (2008).

    Google Scholar 

  50. P. Chandra and P.B. Littelwood: A landau primer for ferroelectrics. In Physics of Ferroelectrics a Modern Perspective, Topics Applied Physics, Vol. 105, K.M. Rabe, C.H. Ahn and J-M. Triscone eds.; Springer-Verlag, Berlin Heidelberg, 2007; pp. 69–116.

    Google Scholar 

  51. H.D. Chopra and M. Wuttig: Non-Joulian magnetostriction. Nature 521, 340 (2015).

    CAS  Google Scholar 

  52. R.G. McQuaid, A. Gruverman, J.F. Scott, and J.M. Gregg: Exploring vertex interactions in ferroelectric flux-closure domains. Nano Lett. 14, 4230–4237 (2014).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (No. 51231007, 51571197, 51501194 and 51521091) and National Basic Research Program of China (2014CB921002). Y.L.T. acknowledges the IMR SYNL-T.S. Kê Research Fellowship and the Youth Innovation Promotion Association CAS (No. 2016177). A.N.M. and E.A.E. acknowledge the financial support from the National Academy of Science of the Ukraine. Z.J.H. gratefully acknowledges the US National Science Foundation under NSF DMR-1210588 and DMR-1420620, and L-Q.C. acknowledges the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-07ER46417.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y.L., Zhu, Y.L., Hong, Z.J. et al. 3D polarization texture of a symmetric 4-fold flux closure domain in strained ferroelectric PbTiO3 films. Journal of Materials Research 32, 957–967 (2017). https://doi.org/10.1557/jmr.2016.259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.259

Navigation