Skip to main content
Log in

Reduced hardening of nanocrystalline nickel under multiaxial indentation loading

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The work hardening behavior of electrodeposited nanocrystalline nickel (29 and 19 nm) was investigated under multiaxial loading and compared with coarse-grained nickel. Plastic strain gradients were introduced into the materials using large Rockwell D hardness indentations, and measured through cross-sectional hardness profiles. The results showed that the coarse-grained material exhibited substantial hardening up to twice the hardness of the deformation-free area due to dislocation mediated deformation, while the nanocrystalline materials displayed small hardness variations along the strain gradient, indicative of considerably reduced dislocation interactions. Moreover, the grain structure analysis (cumulative volume fraction and size distribution) for the nanocrystalline materials suggested the operation of both dislocation mediated and grain boundary controlled deformation mechanisms, the latter becoming more significant with increasing cumulative sample volume of very small grains. The plastic deformation zone sizes under Rockwell indentation of the 29 nm Ni are similar to those conventional materials with reduced strain hardening. Microhardness-indentation size effects were negligible in both the nanocrystalline and coarse-grained materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. W.H. Safranek: The Properties of Electrodeposited Metals and Alloys (American Elsevier Pub. Co., New York, 1974).

    Google Scholar 

  2. G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, and R.W. Armstrong: Hall-petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scr. Metall. 20, 93 (1986).

    CAS  Google Scholar 

  3. A.M. El-Sherik, U. Erb, G. Palumbo, and K.T. Aust: Deviations from Hall–Petch behaviour in as-prepared nanocrystalline nickel. Scr. Metall. Mater. 27, 1185 (1992).

    CAS  Google Scholar 

  4. N. Wang, Z. Wang, K.T. Aust, and U. Erb: Room temperature creep behaviour of nanocrystalline nickel produced by an electrodeposition technique. Mater. Sci. Eng., A 237, 150 (1997).

    Google Scholar 

  5. U. Erb, K.T. Aust, and G. Palumbo: Electrodeposited Nanocrystalline Metals, Alloys and Composites. In Nanostructured Materials, 2nd ed., C.C. Koch ed.; William Andrew Publications: Norwich, New York, 2007; pp. 235–292.

    Google Scholar 

  6. K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).

    CAS  Google Scholar 

  7. C.C. Koch: Structural nanocrystalline materials: An overview. J. Mater. Sci. 42, 1403 (2007).

    CAS  Google Scholar 

  8. F. Ebrahimi, Q. Zhai, and D. Kong: Deformation and fracture of electrodeposited copper. Scr. Mater. 39, 315 (1998).

    CAS  Google Scholar 

  9. F. Dalla Torre, H. Van Swygenhoven, and M. Victoria: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50, 3957 (2002).

    Google Scholar 

  10. E. Ma: Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49, 663 (2003).

    CAS  Google Scholar 

  11. C.C. Koch: Ductility in nanostructured and ultra fine-grained materials: Recent evidence for optimism. J. Metastable Nanocryst. Mater. 18, 9 (2003).

    CAS  Google Scholar 

  12. A. Kulovits, S.X. Wao, and J.M.K. Wiezovek: Microstructural evolution in nanocrystalline Ni during cold-rolling. Acta Mater. 56, 4836 (2008).

    CAS  Google Scholar 

  13. X.L. Wu, Y.T. Zhu, Y.G. Wei, and Q. Wei: Strong strain hardening in nanocrystalline nickel. Phys. Rev. Lett. 103, 20550 (2009).

    Google Scholar 

  14. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    CAS  Google Scholar 

  15. J. Schiotz, F.D. Di Tolla, and K.W. Jacobson: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).

    Google Scholar 

  16. H. Van Swygenhoven: Grain boundaries, and dislocations. Science 296, 66 (2002).

    Google Scholar 

  17. ASTM E18-08b: Specification for Test Method for Rockwell Hardness of Metallic Materials (ASTM International, West Conshohocken, PA, 2011).

    Google Scholar 

  18. L.E. Samuels: Mechanical grinding, abrasion and polishing. In Metals Handbook, Metallography and Microstructures, 9th ed., Vol. 9, ASM Metals Park:OH, USA, 1985; pp. 33–47.

    Google Scholar 

  19. ASTM E384-10e2: Specification for Test Method for Knoop and Vickers Hardness of Materials (ASTM International, West Conshohocken, PA, 2004); pp. 86–109.

    Google Scholar 

  20. J.D. Giallonardo, U. Erb, K.T. Aust, and G. Palumbo: The influence of grain size on the Young’s modulus of electrodeposited nanocrystalline nickel and nickel-iron alloys. Philos. Mag. 91, 4594 (2011).

    CAS  Google Scholar 

  21. B.T.F. Tang, U. Erb, and I. Brooks: Strain hardening in polycrystalline and nanocrystalline nickel. Adv. Mater. Res. 409, 550 (2012).

    CAS  Google Scholar 

  22. H. Conrad, S. Feuerstein, and L. Rice: Effects of grain size on the dislocation density and flow stress of niobium. Mater. Sci. Eng. 2, 157 (1967).

    CAS  Google Scholar 

  23. X.D. Hou, A.J. Bushby, and N.M. Jennett: Study of the interaction between the indentation size effect and Hall–Petch effect with spherical indenters on annealed polycrystalline copper. J. Phys. D: Appl. Phys. 41, 074006 (2008).

    Google Scholar 

  24. D.J. Dunstan, B. Ehrler, R. Bossis, S. Joly, K.M.Y. P’ng, and A.J. Bushby: Elastic limit and strain hardening of thin wires in torsion. Phys. Rev. Lett. 103, 15501 (2009).

    Google Scholar 

  25. A.J. Bushby, T.T. Zhu, and D.J. Dunstan: Slip distance model for the indentation size effect at the initiation of plasticity in ceramics and metals. J. Mater. Res. 24, 966 (2009).

    CAS  Google Scholar 

  26. X. Hou and N.M. Jennett: Application of a modified slip-distance theory to the indentation of single-crystal and polycrystalline copper to model the interactions between indentation size and structure size effects. Acta Mater. 60, 4128 (2012).

    CAS  Google Scholar 

  27. X. Hou, N.M. Jennett, and M. Parlinska-Wojtan: Exploiting interactions between structure size and indentation size effects to determine the characteristic dimension of nano-structured materials by indentation. J. Phys. D: Appl. Phys. 46, 265301 (2013).

    Google Scholar 

  28. W.F. Gale and T.L. Totemeier eds.: Smithhells Metals Reference Book, 8th ed. (Elsevier Butterworth-Heinemann, Burlington, MA, USA, 2004); pp. 22–67.

    Google Scholar 

  29. D. Tabor: A Simple theory of static and dynamic hardness. Proc. R. Soc. London, Ser. A 192, 247 (1948).

    Google Scholar 

  30. G. Williams and H. O’Neill: Straining of metals by indentation including work-softening effects. J. Iron Steel Inst. 182, 266 (1956).

    CAS  Google Scholar 

  31. A. Atkins and D. Tabor: Plastic indentation in metals with cones. J. Mech. Phys. Solids 13, 149–164 (1965).

    Google Scholar 

  32. M. Chaudhri: Subsurface plastic strain distribution around spherical indentations in metals. Philos. Mag. A74, 1213 (1996).

    Google Scholar 

  33. G. Revankar: ASM Handbook, Mechanical Testing and Evaluation, Vol. 8 (Materials Park, Ohio, USA, 2000); p. 195.

    Google Scholar 

  34. R. Hill, B. Storakers, and A.B. Zdunek: A theoretical study of the Brinell hardness test. Proc. R. Soc. London, Ser. A 423, 301 (1989).

    CAS  Google Scholar 

  35. M. Mata, M. Anglada, and J. Alcala: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17, 964 (2002).

    CAS  Google Scholar 

  36. M. Mata, O. Casals, and J. Alcala: The plastic zone size in indentation experiments: The analogy with the expansion of a spherical cavity. Int. J. Solids Struct. 43, 5994 (2006).

    Google Scholar 

  37. L.E. Samuels and T.O. Mulhearn: An experimental investigation of the deformed zone associated with indentation hardness impressions. J. Mech. Phys. Solids 5, 125 (1957).

    Google Scholar 

  38. D.S. Dugdale: Cone indentation experiments. J. Mech. Phys. Solids 2, 265 (1954).

    Google Scholar 

  39. M. Chaudhri: Subsurface deformation patterns around indentations in work-hardened mild steel. Philos. Mag. Lett. 67, 107 (1993).

    CAS  Google Scholar 

  40. Y.T. Cheng and Z. Li: Hardness obtained from conical indentations with various cone angles. J. Mater. Res. 15, 2830 (2000).

    CAS  Google Scholar 

  41. A.W. Thompson: Effect of grain size on work hardening in nickel. Acta Metall. 25, 83 (1977).

    CAS  Google Scholar 

  42. C.W. Sinclair, W.J. Poole, and Y. Brechet: A model for the grain size dependent work hardening of copper. Scr. Mater. 55, 739 (2006).

    CAS  Google Scholar 

  43. E.V. Kozlov, N.A. Koneva, L.I. Trishkina, A.N. Zhdanov, and M.V. Fedorischeva: Features of work hardening of polycrystals with nanograins. Mater. Sci. Forum 584, 35 (2008).

    Google Scholar 

  44. A. Franek, J. Kratochvil, M. Saxlova, and R. Sedlacek: Synergetic approach to work hardening of metals. Mater. Sci. Eng., A 137, 119 (1991).

    Google Scholar 

  45. G.I. Taylor: The mechanism of plastic deformation of crystals. Proc. R. Soc. London, Ser. A 145, 362 (1934).

    CAS  Google Scholar 

  46. D. Kuhlmann-Wilsdorf: A new theory of workhardening. Trans. Metall. Soc. AIME 224, 1047 (1962).

    CAS  Google Scholar 

  47. R.W. Hertzberg: Deformation, and Fracture Mechanics Of Engineering Materials, 3rd ed., (John Wiley & Sons, New York, 1989).

    Google Scholar 

  48. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed. (Wiley, New York, 1982).

    Google Scholar 

  49. M. Legros, B.R. Elliott, M.N. Rittner, J.R. Weertman, and K.J. Hemker: Microsample tensile testing of nanocrystalline metals. Philos. Mag. A 80, 1017 (2000).

    CAS  Google Scholar 

  50. H. Hahn, P. Mondal, and K.A. Padmanabhan: Plastic deformation of nanocrystalline materials. Nanostruct. Mater. 9, 603 (1997).

    CAS  Google Scholar 

  51. H. Van Swygenhoven, M. Spaczer, and A. Caro: Microscopic description of plasticity in computer generated metallic nanophase samples: A comparison between Cu and Ni. Acta Mater. 47, 3117 (1999).

    Google Scholar 

  52. H. Conrad: Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng., A 341, 216 (2003).

    Google Scholar 

  53. H. Van Swygenhoven, M. Spaczer, D. Farkas, and A. Caro: The role of grain size and the presence of low and high angle grain boundaries in the deformation mechanism of nanophase Ni: A molecular dynamics computer simulation. Nanostruct. Mater. 12, 323 (1999).

    Google Scholar 

  54. H. Van Swygenhoven, P.M. Derlet, and A. Hasnaoui: Interaction between dislocations and grain boundaries under an indenter—A molecular dynamics simulation. Acta Mater. 52, 2251 (2004).

    Google Scholar 

  55. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43 (2004).

    CAS  Google Scholar 

  56. J. Giallonardo, G. Avramovic-Cingara, G. Palumbo, and U. Erb: Microstrain and growth fault structures in electrodeposited nanocrystalline Ni and Ni-Fe alloys. J. Mater. Sci. 48, 6689 (2013).

    CAS  Google Scholar 

  57. S.C. Mehta, D.A. Smith, and U. Erb: Study of grain growth in electrodeposited nanocrystalline nickel-1.2 wt% phosphorus alloy. Mater. Sci. Eng., A 204, 227 (1995).

    Google Scholar 

  58. X. Wu, E. Ma, and Y.T. Zhu: Deformation defects in nanocrystalline nickel. J. Mater. Sci. 42, 1427 (2007).

    CAS  Google Scholar 

  59. Y.M. Wang, A.V. Hamza, and E. Ma: Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Appl. Phys. Lett. 86, 24197 (2005).

    Google Scholar 

  60. Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, and S.X. Mao: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).

    CAS  Google Scholar 

  61. C.D. Gu, J.S. Lian, Q. Jiang, and W.T. Zheng: Experimental and modelling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni. J. Phys. D: Appl. Phys. 40, 7440 (2007).

    CAS  Google Scholar 

  62. Y.M. Wang and E. Ma: On the origin of ultrahigh cryogenic strength of nanocrystalline metals. Appl. Phys. Lett. 85, 2750 (2004).

    CAS  Google Scholar 

  63. F. Dalla Torre, P. Spatig, R. Schaublin, and M. Victoria: Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel. Acta Mater. 53, 2337 (2005).

    Google Scholar 

  64. Y.J. Wei, C. Su, and L. Anand: A computational study of the mechanical behavior of nanocrystalline fcc metals. Acta Mater. 54, 3177 (2006).

    CAS  Google Scholar 

  65. M. Srinivas, G. Malakndaiah, and P. Rama Rao: Fracture toughness of f.c.c. nickel and strain ageing b.c.c. iron in the temperature range 77–773 K. Acta Metall. Mater. 41, 1301 (1993).

    CAS  Google Scholar 

  66. P.G. Sanders, C.J. Youngdahl, and J.R. Weertman: The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng., A 234, 77 (1997).

    Google Scholar 

  67. F. Ebrahimi, D.G. Bourne, M.S. Kelly, and T.E. Matthews: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11, 343 (1999).

    CAS  Google Scholar 

  68. H. Li and F. Ebrahimi: Synthesis and characterization of electrodeposited nanocrystalline nickel-iron alloys. Mater. Sci. Eng., A 347, 93 (2003).

    Google Scholar 

  69. L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, and S. Suresh: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 (2005).

    CAS  Google Scholar 

  70. J. Lian and B. Baudelet: A modified Hall-petch relationship for Nanocrysalline materials. Nanostruct. Mater. 2, 415 (1993).

    CAS  Google Scholar 

  71. R.A. Masumura, P.M. Hazzledine, and C.S. Pande: Yield stress of fine grained materials. Acta Mater. 46, 4527 (1998).

    CAS  Google Scholar 

  72. H. Conrad and J. Narayan: On the grain size softening in nanocrystalline materials. Scr. Mater. 42, 1025 (2000).

    CAS  Google Scholar 

  73. H. Conrad and J. Narayan: Mechanisms for grain size hardening and softening in Zn. Acta Mater. 50, 5067 (2002).

    CAS  Google Scholar 

  74. G.J. Fan, H. Choo, P.K. Liaw, and E.J. Lavernia: A model for the inverse Hall–Petch relation of nanocrystalline materials. Mater. Sci. Eng., A 409, 243 (2005).

    Google Scholar 

  75. C.E. Carlton and P.J. Ferreira: What is behind the inverse Hall–Petch effect in nanocrystalline materials?Acta Mater. 55, 3749 (2007).

    CAS  Google Scholar 

  76. I. Brooks, P. Lin, G. Palumbo, G.D. Hibbard, and U. Erb: Analysis of hardness–tensile strength relationships for electroformed nanocrystalline materials. Mater. Sci. Eng., A 491, 412 (2008).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial support by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Ontario Research Fund (ORF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijian Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B.T.F., Zhou, Y., Zabev, T. et al. Reduced hardening of nanocrystalline nickel under multiaxial indentation loading. Journal of Materials Research 30, 3528–3541 (2015). https://doi.org/10.1557/jmr.2015.321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.321

Navigation