Skip to main content
Log in

Orientation relationships between coherent interfaces in hcp–fcc systems subjected to high strain-rate deformation and fracture modes

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We investigated how coherent interfaces, between face centered cubic (fcc)/hexagonal close packed (hcp) systems, affect large strain deformation and fracture modes in hcp zircaloy aggregates with fcc hydrides. We derived 36 unique transformations related to coherent interfaces between fcc and hcp systems. We then used these orientation relations (ORs) with a dislocation-density crystalline plasticity formulation, a nonlinear finite-element, and a fracture approach that account for crack nucleation and propagation. We investigated how these ORs affect crack nucleation and propagation, dislocation density and inelastic slip evolution, stress accumulation, lattice rotation, and adiabatic heating. The predictions indicate that the physical representation of ORs affects local deformation and fracture behavior and are, therefore, essential for the accurate predictions of behavior at different physical scales in heterogeneous crystalline systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  1. J. Lévesque, K. Inal, K.W. Neale, and R.K. Mishra: Numerical modeling of formability of extruded magnesium alloy tubes. Int. J. Plast. 26 (1), 65 (2010).

    Google Scholar 

  2. S. Graff, W. Brocks, and D. Steglich: Yielding of magnesium: From single crystal to polycrystalline aggregates. Int. J. Plast. 23 (12), 1957 (2007).

    CAS  Google Scholar 

  3. K. Inal and R.K. Mishra: Crystal plasticity based numerical modelling of large strain deformation inhexagonal closed packed metals. Procedia IUTAM 3, 239 (2012).

    Google Scholar 

  4. F.F. Lavrentev and Y.A. Pokhil: Relation of dislocation density in different slip systems to work hardening parameters for magnesium crystals. Mater. Sci. Eng. 18 (2), 261 (1975).

    CAS  Google Scholar 

  5. S. Ziaei and M.A. Zikry: Modeling the effects of dislocation-density interaction, generation, and recovery on the behavior of H.C.P. materials. Metall. Mater. Trans. A1 (2014).

    Google Scholar 

  6. N. Gey and M. Humbert: Characterization of the variant selection occurring during the α→β→α phase transformations of a cold rolled titanium sheet. Acta Mater. 50 (2), 277 (2002).

    CAS  Google Scholar 

  7. S. Suwas, R.K. Ray, A.K. Singh, and S. Bhargava: Evolution of hot rolling textures in a two-phase (α2+β) Ti3Al base alloy. Acta Mater. 47 (18), 4585 (1999).

    CAS  Google Scholar 

  8. S. Suwas and R.K. Ray: Effect of rolling on textures of primary and secondary α2 produced by thermomechanical processing of the intermetallic alloy Ti-24Al-11Nb. Scr. Mater. 44 (2), 275 (2001).

    CAS  Google Scholar 

  9. J.C. Williams and G. Lutjering: Titanium (Springer, Berlin, Germany, 2003).

    Google Scholar 

  10. R.T. Webster: ASM Handbook. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol. 2 (ASM, Novelty, OH, 1990); p. 1328.

    Google Scholar 

  11. J.H. Schemel: ASTM Manual on Zirconium and Hafnium (ASTM International, West Conshohocken, PA, 1977).

    Google Scholar 

  12. A. Sarkar, K. Boopathy, J. Eapen, and K.L. Murty: Creep behavior of hydrogenated zirconium alloys. J. Mater. Eng. Perform. 23 (10), 3649 (2014).

    CAS  Google Scholar 

  13. K.L. Murty and I. Charit: Texture development and anisotropic deformation of zircaloys. Prog. Nucl. Energy 48 (4), 325 (2006).

    CAS  Google Scholar 

  14. A.T. Motta, A. Yilmazbayhan, M.J. Gomes da Silva, R.J. Comstock, G.S. Was, J.T. Busby, E. Gartner, Q. Peng, Y.H. Jeong, and J.Y. Park: Zirconium alloys for supercritical water reactor applications: Challenges and possibilities. J. Nucl. Mater. 371 (1–3), 61 (2007).

    CAS  Google Scholar 

  15. A.M. Alam and C. Hellwig: Cladding tube deformation test for stress reorientation of hydrides. In Zirconium in the Nuclear Industry: 15th International Symposium, Vol. 1505, ASTM International, West Conshohocken, PA, 2009; p. 635.

    Google Scholar 

  16. C. Lemaignan and A.T. Motta: Zirconium Alloys in Nuclear Applications (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).

  17. J.J. Kearns: Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, zircaloy-2 and zircaloy-4. J. Nucl. Mater. 22 (3), 292 (1967).

    CAS  Google Scholar 

  18. J.J. Kearns: Dissolution kinetics of hydride platelets in zircaloy-4. J. Nucl. Mater. 27 (1), 64 (1968).

    CAS  Google Scholar 

  19. W. Qin, N.A.P. Kiran Kumar, J.A. Szpunar, and J. Kozinski: Intergranular δ-hydride nucleation and orientation in zirconium alloys. Acta Mater. 59 (18), 7010 (2011).

    CAS  Google Scholar 

  20. M.P. Puls: The effects of misfit and external stresses on terminal solid solubility in hydride-forming metals. Acta Metall. 29 (12), 1961 (1981).

    CAS  Google Scholar 

  21. M.P. Puls: Elastic and plastic accommodation effects on metal-hydride solubility. Acta Metall. 32 (8), 1259 (1984).

    CAS  Google Scholar 

  22. M.P. Puls: Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys. J. Nucl. Mater. 393 (2), 350 (2009).

    CAS  Google Scholar 

  23. M. Veleva, S. Arsene, M. Record, J. Bechade, and J. Bai: Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) ZIRCALOY cladding tubes: Part II. Morphology of hydrides investigated at different magnifications and their interaction with the processes of plastic deformation. Metall. Mater. Trans. A 34 (3), 567 (2003).

    Google Scholar 

  24. S. Arsene, J.B. Bai, and P. Bompard: Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) ZIRCALOY cladding tubes: Part I. Hydride embrittlement in stress-relieved, annealed, and recrystallized ZIRCALOYs at 20 °C and 300 °C. Metall. Mater. Trans. A 34 (3), 553 (2003).

    Google Scholar 

  25. M. Puls: Fracture initiation at hydrides in zirconium. Metall. Trans. A 22 (10), 2327 (1991).

    Google Scholar 

  26. M. Puls, S. Shi, and J. Rabier: Experimental studies of mechanical properties of solid zirconium hydrides. J. Nucl. Mater. 336 (1), 73 (2005).

    CAS  Google Scholar 

  27. X-F. Gu and W-Z. Zhang: A simple method for calculating the possible habit planes containing one set of dislocations and its applications to fcc/bct and hcp/bcc systems. Metall. Mater. Trans. A 45A (4), 1855 (2014).

    Google Scholar 

  28. Z. Wang, U. Garbe, H. Li, A.J. Studer, R.P. Harrison, M.D. Callaghan, Y. Wang, and X. Liao: Hydrogen-induced microstructure, texture and mechanical property evolutions in a high-pressure torsion processed zirconium alloy. Scr. Mater. 67 (9), 752 (2012).

    CAS  Google Scholar 

  29. G. Pilania, B.J. Thijsse, R.G. Hoagland, I. Lazic, S.M. Valone, and X. Liu: Revisiting the Al/Al2O3 interface: Coherent interfaces and misfit accommodation. Sci. Rep. 4, 4485 (2014).

    Google Scholar 

  30. D.A. Porter, K.E. Easterling, and M. Sherif: Phase Transformations in Metals and Alloys (CRC Press, Boca Raton, FL, 2009); 520 pp.

    Google Scholar 

  31. H. Abdolvand, M.R. Daymond, and C. Mareau: Incorporation of twinning into a crystal plasticity finite element model: Evolution of lattice strains and texture in zircaloy-2. Int. J. Plast. 27 (11), 1721 (2011).

    CAS  Google Scholar 

  32. M.A. Zikry: An accurate and stable algorithm for high strain-rate finite strain plasticity. Comput. Struct. 50 (3), 337 (1994).

    Google Scholar 

  33. Q. Wu, P. Shanthraj, and M.A. Zikry: Modeling the heterogeneous effects of retained austenite on the behavior of martensitic high strength steels. Int. J. Fract. 184 (1–2), 241 (2013).

    CAS  Google Scholar 

  34. R.J. Asaro and J.R. Rice: Strain localization in ductile single-crystals. J. Mech. Phys. Solids 50, 337 (1977).

    Google Scholar 

  35. P. Franciosi, M. Berveiller, and A. Zaoui: Latent hardening in copper and aluminium single crystals. Acta Metall. 28 (3), 273 (1980).

    CAS  Google Scholar 

  36. B. Devincre, T. Hoc, and L. Kubin: Dislocation mean free paths and strain hardening of crystals. Science 320, 1745 (2008).

    CAS  Google Scholar 

  37. L. Kubin, B. Devincre, and T. Hoc: Towards a physical model for strain hardening in fcc crystals. Mater. Sci. Eng., A 19, 483–484 (2008).

    Google Scholar 

  38. L. Kubin, B. Devincre, and T. Hoc: Modeling dislocation storage rates and mean free paths in face-centered cubic crystals. Acta Mater. 56 (20), 6040 (2008).

    CAS  Google Scholar 

  39. M.A. Zikry and M. Kao: Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J. Mech. Phys. Solids 44 (11), 1765 (1996).

    CAS  Google Scholar 

  40. P. Shanthraj and M.A. Zikry: Dislocation density evolution and interactions in crystalline materials. Acta Mater. 59 (20), 7695 (2011).

    CAS  Google Scholar 

  41. M-X. Zhang, S-Q. Chen, H-P. Ren, and P.M. Kelly: Crystallography of the simple HCP/FCC system. Metall. Mater. Trans. A 39A (5), 1077 (2008).

    CAS  Google Scholar 

  42. M. Niewczas: Lattice correspondence during twinning in hexagonal close-packed crystals. Acta Mater. 58 (17), 5848 (2010).

    CAS  Google Scholar 

  43. A. Musienko and G. Cailletaud: Simulation of inter- and transgranular crack propagation in polycrystalline aggregates due to stress corrosion cracking. Acta Mater. 57 (13), 3840 (2009).

    CAS  Google Scholar 

  44. E. Pouillier, A. Gourgues, D. Tanguy, and E.P. Busso: A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement. Int. J. Plast. 34, 139 (2012).

    CAS  Google Scholar 

  45. Q. Wu and M.A. Zikry: Microstructural modeling of crack nucleation and propagation in high strength martensitic steels. Int. J. Solids Struct. 51 (25–26), 4345 (2014).

    CAS  Google Scholar 

  46. A. Hansbo and P. Hansbo: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193 (33–35), 3523 (2004).

    Google Scholar 

  47. J.W. Morris, Jr.: On the ductile-brittle transition in lath martensitic steel. ISIJ Int. 51 (10), 1569 (2011).

    CAS  Google Scholar 

  48. C. Wang, M. Wang, J. Shi, W. Hui, and H. Dong: Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scr. Mater. 58 (6), 492 (2008).

    CAS  Google Scholar 

  49. C.Q. Chen, S.X. Li, H. Zheng, L.B. Wang, and K. Lu: An investigation on structure, deformation and fracture of hydrides in titanium with a large range of hydrogen contents. Acta Mater. 52 (12), 3697 (2004).

    CAS  Google Scholar 

  50. S. Arsene, J. Bai, and P. Bompard: Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) ZIRCALOY cladding tubes: Part III. Mechanical behavior of hydride in stress-relieved annealed and recrystallized ZIRCALOYs at 20 °C and 300 °C. Metall. Mater. Trans. A 34 (3), 579 (2003).

    Google Scholar 

  51. T. Kubo, Y. Kobayashi, and H. Uchikoshi: Determination of fracture strength of δ-zirconium hydrides embedded in zirconium matrix at high temperatures. J. Nucl. Mater. 435 (1–3), 222 (2013).

    CAS  Google Scholar 

  52. A. Rico, M.A. Martin-Rengel, J. Ruiz-Hervias, J. Rodriguez, and F.J. Gomez-Sanchez: Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding. J. Nucl. Mater. 452 (1–3), 69 (2014).

    CAS  Google Scholar 

  53. M. Kuroda, K. Yoshioka, S. Yamanaka, H. Anada, F. Nagase, and H. Uetsuka: Influence of precipitated hydride on the fracture behavior of zircaloy fuel cladding tube. J. Nucl. Sci. Technol. 37 (8), 670 (2000).

    CAS  Google Scholar 

  54. C. Mareau and M.R. Daymond: Comparison of experimentally determined texture development in zircaloy-2 with predictions from a rate-dependent polycrystalline model. Mater. Sci. Eng., A 528 (29–30), 8676 (2011).

    CAS  Google Scholar 

  55. D.C. Hofman and V.A. Lubarda: New method for determining hexagonal direction indices and their relationship to crystallographic directions. J. Appl. Crystallogr. 36 (1), 23 (2003).

    Google Scholar 

  56. K. Une, K. Nogita, S. Ishimoto, and K. Ogata: Crystallography of zirconium hydrides in recrystallized zircaloy-2 fuel cladding lay electron backscatter diffraction. J. Nucl. Sci. Technol. 41 (7), 731 (2004).

    CAS  Google Scholar 

  57. V. Perovic and G.C. Weatherly: The β to α transformation in a Zr-2.5 wt% Nb alloy. Acta Metall. 37 (3), 813 (1989).

    CAS  Google Scholar 

  58. L. Tournadre, F. Onimus, J-L. Béchade, D. Gilbon, J-M. Cloué, J-P. Mardon, and X. Feaugas: Toward a better understanding of the hydrogen impact on the radiation induced growth of zirconium alloys. J. Nucl. Mater. 441 (1–3), 222 (2013).

    CAS  Google Scholar 

  59. M.H. Yoo, S.R. Agnew, J.R. Morris, and K.M. Ho: Non-basal slip systems in HCP metals and alloys: Source mechanisms. Mater. Sci. Eng., A 319–321, 87 (2001).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

A Support from the Consortium for Advanced Simulation of Light Water Reactors an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR227 and partial support from ARO grant W911NF-12-1-0329 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Zikry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziaei, S., Wu, Q. & Zikry, M.A. Orientation relationships between coherent interfaces in hcp–fcc systems subjected to high strain-rate deformation and fracture modes. Journal of Materials Research 30, 2348–2359 (2015). https://doi.org/10.1557/jmr.2015.207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.207

Navigation