Skip to main content

Advertisement

Log in

Synthesis of nickel sulfides of different phases for counter electrodes in dye-sensitized solar cells by a solvothermal method with different solvents

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Two phases of nickel sulfide (α-NiS and β-NiS) nanoarchitectures were successfully and controllably synthesized by a facile solvothermal method with two different solvents of alcohol and water, respectively. The products were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV-vis diffuse reflectance spectrophotometer. The sphere-like shape for α-NiS and cross-like shape composed of nanorods for β-NiS are uniform and well distributed as well as their size. Both α-NiS and β-NiS powders were used as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). It is found that the DSSC with an α-NiS CE performs much better than the one with a β-NiS CE. The energy conversion efficiency of the former was 5.2%, whereas the latter was 4.2%, about 20% increment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. B. Oregan and M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  CAS  Google Scholar 

  2. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, and M. Grätzel: Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516, 4613–4619 (2008).

    Article  CAS  Google Scholar 

  3. A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, and H. Pettersson: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010).

    Article  CAS  Google Scholar 

  4. C. Prasittichai and J.T. Hupp: Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: Significant improvements in photovoltage via Al2O3 atomic layer deposition. Phys. Chem. Lett. 1, 1611–1615 (2010).

    Article  CAS  Google Scholar 

  5. A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, and M. Grätzel: Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011).

    Article  CAS  Google Scholar 

  6. M. Wang, A.M. Anghel, B. Marsan, N.L.C. Ha, N. Pootrakulchote, S.M. Zakeeruddin, and M. Grätzel: CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 15976–15977 (2009).

    Article  CAS  Google Scholar 

  7. Z. Li, F. Gong, G. Zhou, and Z-S. Wang: NiS2/reduced graphene oxide nanocomposites for efficient dyesensitized solar cells. J. Phys. Chem. C 117, 6561–6566 (2013).

    Article  CAS  Google Scholar 

  8. X. Chen and H.G. Yang: Low-cost SnSx counter electrodes for dye-sensitized solar cells. Chem. Commun. 49, 5793–5795 (2013).

    Article  CAS  Google Scholar 

  9. J. Park, B. Koo, K.Y. Yoon, Y. Hwang, M. Kang, J-G. Park, and T. Hyeon: Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal–phosphine complexes using a syringe pump. J. Am. Chem. Soc. 127, 8433–8440 (2005).

    Article  CAS  Google Scholar 

  10. S.Y. Tai, C.J. Liu, S.W. Chou, F.S-S. Chien, J-Y. Lin, and T-W. Lin: Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells. J. Mater. Chem. 22, 24753–24759 (2012).

    Article  CAS  Google Scholar 

  11. B. Fang, S-Q. Fan, J.H. Kim, M-S. Kim, M. Kim, N.K. Chaudhari, J. Ko, and J-S. Yu: Incorporating hierarchical nanostructured carbon counter electrode into metal-free organic dye-sensitized solar cell. Langmuir 26, 11238–11243 (2010).

    Article  CAS  Google Scholar 

  12. Q. Pan, J. Xie, S.Y. Liu, G.S. Cao, T.J. Zhu, and X.B. Zhao: Facile one-pot synthesis of ultrathin NiS nanosheets anchored on graphene and the improved electrochemical Li-storage properties. RSC Adv. 3, 3899–3906 (2013).

    Article  CAS  Google Scholar 

  13. S. Sohrabnezhad, A. Pourahmad, M.S. Sadjadi, and M.A. Zanjanchi: Growth and characterization of NiS and NiCoS nanoparticles in mordenite zeolite host. Mater. Sci. Eng. C 28, 202–205 (2008).

    Article  CAS  Google Scholar 

  14. S. Larsson: Localization of electrons and excitations. Chem. Phys. 326115–122 (2006).

    Article  CAS  Google Scholar 

  15. Z.L. Ku and H.W. Han: Transparent NiS counter electrodes for thiolate/disulfide mediated dye-sensitized solar cells. J. Mater. Chem. A 1, 237–240 (2013).

    Article  CAS  Google Scholar 

  16. H.C. Sun, D. Qin, S.Q. Huang, X.Z. Guo, D.M. Li, Y.H. Luo, and Q.B. Meng: Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 4, 2630–2637 (2011).

    Article  CAS  Google Scholar 

  17. A. Ghezelbash, M.B. Sigman, and B.A. Korgel: Solventless synthesis of nickel sulfide nanorods and triangular nanoprisms. Nano Lett. 4, 537–542 (2004).

    Article  CAS  Google Scholar 

  18. J.T. Hupp and K.R. Poeppelmeier: Better living through nanopore chemistry. Science 309, 2008–2009 (2005).

    Article  CAS  Google Scholar 

  19. X.L. Gou, F.Y. Cheng, Y.H. Shi, L. Zhang, S.J. Peng, H. Chen, and P.W. Shen: Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route. J. Am. Chem. Soc. 128, 7222–7229 (2006).

    Article  CAS  Google Scholar 

  20. A.L. Abdelhady, M.A. Malik, P. O’Brien, and F. Tuna: Nickel and iron sulfide nanoparticles from thiobiurets. J. Phys. Chem. C 116, 2253–2259 (2012).

    Article  CAS  Google Scholar 

  21. A.R. Roosen and W.C. Carter: Simulations of microstructural evolution: Anisotropic growth and coarsening. Physica A 261, 232–247 (1998).

    Article  CAS  Google Scholar 

  22. H. Li, L. Chai, X. Wang, G. Xi, Y. Liu, and Y. Qian: Hydrothermal, growth and morphology modification of β-NiS three-dimensional flowerlike architectures. Cryst. Growth Des. 7, 1918–1922 (2007).

    Article  CAS  Google Scholar 

  23. Y.P. Du, Z.Y. Yin, J.X. Zhu, X. Huang, X.J. Wu, Z.Y. Zeng, Q. Y. Yan, and H. Zhang: A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 3, 1177–1183 (2012).

    Article  Google Scholar 

  24. Y. Hu, J.F. Chen, W.M. Chen, X.H. Lin, and X.L. Li: Synthesis of novel sulfide submicrometer hollow spheres. Adv. Mater. 15, 726–729 (2003).

    Article  CAS  Google Scholar 

  25. M. Nakamura, A. Fujimori, M. Sacchi, J.C. Fuggle, A. Misu, T. Mamori, H. Tamura, M. Matoba, and S. Anzai: Metal-nonmetal transition in NiS induced by Fe and Co substitution: X-ray-absorption spectroscopic study. Phys. Rev. B 48, 16942–16947 (1993).

    Article  CAS  Google Scholar 

  26. T. Nyari, P. Barvinschi, R. Bǎies, P. Vlǎzan, F. Barvinschi, and I. Dekany: Experimental and numerical results in hydrothermal synthesis of CuInS2 compound semiconductor nanocrystals. J. Cryst. Growth 275, e2383–e2387 (2005).

    Article  CAS  Google Scholar 

  27. H. Okamura, J. Naitoh, T. Nanba, M. Matoba, M. Nishioka, S. Anzai, I. Shimoyama, K. Fukui, H. Miura, H. Nakagawa, K. Nakagawa, and T. Kinoshita: Optical study of the metal–nonmetal transition in Ni1-δS. Solid State Commun. 112, 91–95 (1999).

    Article  CAS  Google Scholar 

  28. S. Cho, S.H. Hwang, C. Kim, and J. Jang: Polyaniline porous counter-electrodes for high performance dye-sensitized solar cells. J. Mater. Chem. 22, 12164–12171(2012).

    Article  CAS  Google Scholar 

  29. A. Yella, H-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W-G. Diau, C-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel: Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629–633 (2011).

    Article  CAS  Google Scholar 

  30. M. Grätzel: Dye-sensitized solar cells. J. Phys. Chem. C 4, 145–153(2003).

    Google Scholar 

  31. Q.W. Jiang, G.R. Li, and X.P. Gao: Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem. Commun. 44, 6720–6722 (2009).

    Article  Google Scholar 

  32. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grätzel: Conversion of light to electricity by cis-X2bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN–) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993).

    Article  CAS  Google Scholar 

  33. X.N. Zhang, J. Zhang, Y.Y. Cui, J.J. Feng, and Y.J. Zhu: Carbon/polymer composite counter-electrode application in dye-sensitized solar cells. J. Appl. Polym. Sci. 128, 75–79 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by National Natural Science Foundation of China (11174002) and by ‘211 Project’ of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Zhou, L., Feng, A. et al. Synthesis of nickel sulfides of different phases for counter electrodes in dye-sensitized solar cells by a solvothermal method with different solvents. Journal of Materials Research 29, 935–941 (2014). https://doi.org/10.1557/jmr.2014.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.74

Navigation