Skip to main content
Log in

Piezoresistance in silicon and its nanostructures

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Piezoresistance (PZR) is the change in the electrical resistivity of a solid induced by an applied mechanical stress. Its origin in bulk crystalline materials like silicon is principally a change in the electronic structure which leads to a modification of the effective mass of charge carriers. The past few years have seen a rising interest in the PZR properties of semiconductor nanostructures, motivated in part by claims of a giant PZR (GPZR) in silicon nanowires more than two orders of magnitude bigger than the known bulk effect. This review aims to present the controversy surrounding claims and counterclaims of GPZR in silicon nanostructures by summarizing the major works carried out over the past 10 years. The main conclusions to be drawn from the literature are that (i) reproducible evidence for a GPZR in ungated nanowires is limited; (ii) in gated nanowires, GPZR has been reproduced by several authors; (iii) the giant effect is fundamentally different from either the bulk silicon PZR or that resulting from quantum confinement, the evidence pointing to an electrostatic origin; (iv) released nanowires tend to have slightly larger PZR than unreleased nanowires; and (v) insufficient work has been performed on bottom-up grown nanowires to be able to rule out a fundamental difference in their properties when compared with top-down nanowires. On the basis of this, future possible research directions are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

REFERENCES

  1. P.W. Bridgman: The electrical resistance of metals under pressure. Proc. Am. Acad. Arts Sci. 52, 573 (1917).

    Article  CAS  Google Scholar 

  2. P.W. Bridgman: The resistance of 72 elements, alloys and compounds to 100,000 Kg/Cm2. Proc. Am. Acad. Arts Sci. 81, 165 (1952).

    Article  CAS  Google Scholar 

  3. L. Fu, C.L. Kane, and E.J. Mele: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  CAS  Google Scholar 

  4. J.C. Wolfe: Summary of the Kronig-Penney electron. Am. J. Phys. 46, 1012 (1978).

    Article  Google Scholar 

  5. C.S. Smith: Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42 (1954).

    Article  CAS  Google Scholar 

  6. O.N. Tufte and E.L. Stelzer: Piezoresistive properties of heavily doped n-type silicon. J. Appl. Phys. 34, 313 (1963).

    Article  CAS  Google Scholar 

  7. C. Herring and E. Vogt: Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944 (1956).

    Article  CAS  Google Scholar 

  8. J. Aubrey, W. Gubler, T. Henningsen, and S. Koenig: Piezoresistance and piezo-Hall-effect in n-type silicon. Phys. Rev. 130, 1667 (1963).

    Article  Google Scholar 

  9. J.S. Milne, I. Favorskiy, A.C.H. Rowe, S. Arscott, and C. Renner: Piezoresistance in silicon at uniaxial compressive stresses up to 3 GPa. Phys. Rev. Lett. 108, 256801 (2012).

    Article  CAS  Google Scholar 

  10. Y. Kanda: A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron Devices 29, 64 (1982).

    Article  Google Scholar 

  11. E. Adams: Elastoresistance in p-type Ge and Si. Phys. Rev. 96, 803 (1954).

    Article  CAS  Google Scholar 

  12. Y. Ohmura: Piezoresistance effect in p-type Si. Phys. Rev. B 42, 9178 (1990).

    Article  CAS  Google Scholar 

  13. K. Suzuki, H. Hasegawa, and Y. Kanda: Origin of the linear and nonlinear piezoresistance effects in p-type silicon. Jpn. J. Appl. Phys. 23, L871 (1984).

    Article  CAS  Google Scholar 

  14. P. Kleimann, B. Semmache, M. Le Berre, and D. Barbier: Stress-dependent hole effective masses and piezoresistive properties of p-type monocrystalline and polycrystalline silicon. Phys. Rev. B 57, 8966 (1998).

    Article  CAS  Google Scholar 

  15. J. Richter, J. Pedersen, M. Brandbyge, E. Thomsen, and O. Hansen: Piezoresistance in p-type silicon revisited. J. Appl. Phys. 104, 023715 (2008).

    Article  CAS  Google Scholar 

  16. S. Thompson, G. Sun, Y. Choi, and T. Nishida: Uniaxial-process-induced strained-Si: Extending the CMOS roadmap. IEEE Trans. Electron Devices 53, 1010 (2006).

    Article  CAS  Google Scholar 

  17. X. Fan, L. Register, B. Winstead, M. Foisy, W. Chen, X. Zheng, B. Ghosh, and S. Banerjee: Hole mobility and thermal velocity enhancement for uniaxial stress in Si up to 4 GPa. IEEE Trans. Electron Devices 54, 291 (2007).

    Article  CAS  Google Scholar 

  18. R. He and P. Yang: Giant piezoresistance effect in silicon nanowires. Nature Nanotech. 1, 42 (2006).

    Article  CAS  Google Scholar 

  19. K. Matsuda, Y. Kanda, K. Yamamura, and K. Suzuki: Second-order piezoresistance coefficients of p-type silicon. Jap. J. Appl. Phys. 29, L1941 (1990).

    Article  CAS  Google Scholar 

  20. K. Matsuda, K. Suzuki, K. Yamamura, and Y. Kanda: Nonlinear piezoresistance effects in silicon. J. Appl. Phys. 73, 1838 (1993).

    Article  CAS  Google Scholar 

  21. L. Shifren, X. Wang, P. Matagne, B. Obradovic, C. Auth, S. Cea, T. Ghani, J. He, T. Hoffman, R. Kotlyar, Z. Ma, K. Mistry, R. Nagisetty, R. Shaheed, M. Stettler, C. Weber, M.D. Giles: Drive current enhancement in p-type metal–oxide–semiconductor field-effect transistors under shear uniaxial stress. Appl. Phys. Lett. 85, 6188 (2004).

    Article  CAS  Google Scholar 

  22. Y. Tsang, A. O’Neill, B. Gallacher, and S. Olsen: Using piezoresistance model with cr conversion for modeling of strain-induced mobility. IEEE Trans. Electron Devices 29, 1062 (2008).

    Article  CAS  Google Scholar 

  23. S.I. Kozlovskiy and N.N. Sharan: Piezoresistive effect in p-type silicon classical nanowires at high uniaxial strains. J. Comput. Electron. 10, 258 (2011).

    Article  CAS  Google Scholar 

  24. G. Dorda: Effective mass change of electrons in silicon inversion layers observed by piezoresistance. Appl. Phys. Lett. 17, 406 (1970).

    Article  CAS  Google Scholar 

  25. G. Dorda: Piezoresistance in quantized conduction bands in silicon inversion layers. J. Appl. Phys. 42, 2053 (1971).

    Article  CAS  Google Scholar 

  26. I. Eisele: Stress and intersubband correlation in the silicon inversion layer. Surf. Sci. 73, 315 (1978).

    Article  CAS  Google Scholar 

  27. G. Dorda, I. Eisele, and H. Gesch: Many-valley interactions in n-type silicon inversion layers. Phys. Rev. B 17, 1785 (1978).

    Article  CAS  Google Scholar 

  28. Y.P. Shkolnikov, K. Vakili, E.P. De Poortere, and M. Shayegan: Giant low-temperature piezoresistance effect in AlAs two-dimensional electrons. Appl. Phys. Lett. 85, 3766 (2004).

    Article  CAS  Google Scholar 

  29. B. Habib, J. Shabani, E.P. De Poortere, M. Shayegan, and R. Winkler: Anisotropic low-temperature piezoresistance in (311)A GaAs two-dimensional holes. Appl. Phys. Lett. 91, 012107 (2007).

    Article  CAS  Google Scholar 

  30. T. Yasutada, T. Toriyama, and S. Sugiyama: Characteristics of polycrystalline Si nano wire piezoresistors. In Proceedings of the Technical Digest of the Sensor Symposium, Interlaken, Switzerland. Vol. 17, 1999; 195.

    Google Scholar 

  31. T. Toriyama, Y. Tanimoto, and S. Sugiyama: Single crystal silicon nano-wire piezoresistors for mechanical sensors. J. Microelectromech. Syst. 11, 605 (2002).

    Article  CAS  Google Scholar 

  32. T. Toriyama, D. Funai, and S. Sugiyama: Piezoresistance measurement on single crystal silicon nanowires. J. Appl. Phys. 93, 561 (2003).

    Article  CAS  Google Scholar 

  33. R.E. Beaty, R.C. Jaeger, J.C. Suhling, R.W. Johnson, and R.D. Butler: Evaluation of piezoresistive coefficient variation in silicon stress sensors using a four-point bending test fixture. IEEE Trans. Comp. Hyb. Man. Tech. 15, 904 (1992).

    Article  Google Scholar 

  34. J.X. Cao, X.G. Gong, and R.Q. Wu: Giant piezoresistance and its origin in Si (111) nanowires: First-principles calculations. Phys. Rev. B 75, 233302 (2007).

    Article  CAS  Google Scholar 

  35. D. Shiri, Y. Kong, A. Buin, and M.P. Anantram: Strain induced change of bandgap and effective mass in silicon nanowires. Appl. Phys. Lett. 93, 073114 (2008).

    Article  CAS  Google Scholar 

  36. K. Nakamura, D.V. Dao, B.T. Tung, T. Toriyama, and S. Sugiyama: Piezoresistive effect in silicon nanowires—a comprehensive analysis based on first-principles calculations. International symposium on Micro-NanoMechanics and Human Science, 2009. 2009; 38.

    Chapter  Google Scholar 

  37. P.W. Leu, A. Svizhenko, and K. Cho: Ab initio calculations of the mechanical and electronic properties of strained Si nanowires. Phys. Rev. B 77, 235305 (2008).

    Article  CAS  Google Scholar 

  38. Y-M. Niquet, C. Delerue, and C. Krzeminski: Effects of strain on the carrier mobility in silicon nanowires. Nano Lett. 12, 3545 (2012).

    Article  CAS  Google Scholar 

  39. L.T. Canham: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).

    Article  CAS  Google Scholar 

  40. X. Zhao, C.M. Wei, L. Yang, and M.Y. Chou: Quantum confinement and electronic properties of silicon nanowires. Phys. Rev. Lett. 92, 236805 (2004).

    Article  CAS  Google Scholar 

  41. A.C.H. Rowe: Silicon nanowires feel the pinch. Nat. Nanotech. 3, 312 (2008).

    Article  CAS  Google Scholar 

  42. T.T. Nghiem, V. Aubry-Fortuna, C. Chassat, A. Bosseboeuf, and P. Dollfus: Monte Carlo simulation of giant piezoresistance effect in p-type silicon nanostructures. Mod. Phys. Lett. B 25, 995 (2011).

    Article  CAS  Google Scholar 

  43. A. Hamada and E. Takeda: Hot-electron trapping activation energy in PMOSFET’s under mechanical stress. IEEE Trans. Electron Devices 15, 31 (1994).

    Article  Google Scholar 

  44. Z. Xiao, J. She, S. Deng, and N. Xu: Large piezoresistance of single silicon nano-needles induced by non-uniaxial strain. J. Appl. Phys. 110, 114323 (2011).

    Article  CAS  Google Scholar 

  45. U. Kumar Bhaskar, T. Pardoen, V. Passi, and J-P. Raskin: Surface states and conductivity of silicon nano-wires. J. Appl. Phys. 113, 134502 (2013).

    Article  CAS  Google Scholar 

  46. K. Reck, J. Richter, O. Hansen, and E.V. Thomsen: Piezoresistive effect in top-down fabricated silicon nanowires. International Conference on Micro Electro Mechanical Systems, Tuscon, AZ, 2008. Vol. 217. 2008.

  47. T.T. Bui, D.V. Dao, K. Nakamura, T. Toriyama, and S. Sugiyama: Evaluation of the piezoresistive effect in single crystalline silicon nanowires. IEEE Sens. 1–3, 41 (2009).

    Google Scholar 

  48. K. Reck, J. Richter, O. Hansen, and E.V. Thomsen: Increased piezoresistive effect in crystalline and polycrystalline Si nanowires. NTSI Nanotech. 1, 920 (2008).

    CAS  Google Scholar 

  49. J.S. Milne, A.C.H. Rowe, S. Arscott, and C. Renner: Giant piezoresistance effects in silicon nanowires and microwires. Phys. Rev. Lett. 105, 226802 (2010).

    Article  CAS  Google Scholar 

  50. A. Koumela, D. Mercier, C. Dupré, G. Jourdan, C. Marcoux, E. Ollier, S.T. Purcell, and L. Duraffourg: Piezoresistance of top-down suspended Si nanowires. Nanotechnology 22, 395701 (2011).

    Article  CAS  Google Scholar 

  51. T. Barwicz, L. Klein, S.J. Koester, and H. Hamann: Silicon nanowire piezoresistance: Impact of surface crystallographic orientation. Appl. Phys. Lett. 97, 023110 (2010).

    Article  CAS  Google Scholar 

  52. F. Rochette, M. Cassé, M. Mouis, A. Haziot, T. Pioger, G. Ghibaudo, and F. Boulanger: Piezoresistance effect of strained and unstrained fully-depleted silicon-on-insulator MOSFETs integrating a HfO2/TiN gate stack. Solid State Electron. 53, 392 (2009).

    Article  CAS  Google Scholar 

  53. V. Passi, F. Ravaux, E. Dubois, and J.P. Raskin: Backgate bias and stress level impact on giant piezoresistance effect in thin silicon films and nanowires. International Conference on Micro Electro Mechanical Systems, Wanchai, Hong Kong, 2010; 464.

  54. T.K. Kang: The piezoresistive effect in n-type junctionless silicon nanowire transistors. Nanotechnology 23, 475203 (2012).

    Article  CAS  Google Scholar 

  55. T.K. Kang: Evidence for giant piezoresistance effect in n-type silicon nanowire field-effect transistors. Appl. Phys. Lett. 100, 163501 (2012).

    Article  CAS  Google Scholar 

  56. P. Singh, W.T. Park, J. Miao, L. Shao, R. Krishna Kotlanka, and D.L. Kwong: Tunable piezoresistance and noise in gate-all-around nanowire field-effect-transistor. Appl. Phys. Lett. 100, 063106 (2012).

    Article  CAS  Google Scholar 

  57. P. Neuzil, C.C. Wong, and J. Reboud: Electrically controlled giant piezoresistance in silicon nanowires. Nano Lett. 10, 1248 (2010).

    Article  CAS  Google Scholar 

  58. Y. Yang and X. Li: Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement. Nanotechnology 22, 015501 (2011).

    Article  CAS  Google Scholar 

  59. A. Lugstein, M. Steinmair, A. Steiger, H. Kosina, and E. Bertagnolli: Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett. 10, 3204 (2010).

    Article  CAS  Google Scholar 

  60. Y. Zhang, X.Y. Liu, C.H. Ru, Y.L. Zhang, L.X. Dong, and Y. Sun: Piezoresistivity characterization of synthetic silicon nanowires using a MEMS device. J. Microelectromech. Syst. 20, 959 (2011).

    Article  CAS  Google Scholar 

  61. J.J. Wortman and R.A. Evans: Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965).

    Article  CAS  Google Scholar 

  62. U. Kumar Bhaskar, T. Pardoen, V. Passi, and J-P. Raskin: Piezoresistance of nano-scale silicon up to 2 GPa in tension. Appl. Phys. Lett. 102, 031911 (2013).

    Article  CAS  Google Scholar 

  63. D. Vu, S. Arscott, E. Peytavit, R. Ramdani, E. Gil, Y. André, S. Bansropun, B. Gérard, A.C.H. Rowe, and D. Paget: Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces. Phys. Rev. B 82, 115331 (2010).

    Article  CAS  Google Scholar 

  64. F.J. Himpsel, G. Hollinger, and R.A. Pollak: Determination of the Fermi-level pinning position at Si (111) surfaces. Phys. Rev. B 28, 7014 (1983).

    Article  CAS  Google Scholar 

  65. L.M. Terman: An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron. 5, 285 (1962).

    Article  CAS  Google Scholar 

  66. D.J. Chadi, P.H. Citrin, C.H. Park, D.L. Adler, M.A. Marcus, and H-J. Gossman: Fermi-level-pinning defects in highly n-doped silicon. Phys. Rev. Lett. 79, 4843 (1997).

    Article  Google Scholar 

  67. L.F. Wagner and W.E. Spicer: Photoemission study of the effect of bulk doping and oxygen exposure on silicon surface states. Phys. Rev. B 9, 1512 (1974).

    Article  CAS  Google Scholar 

  68. E. Anderås, L. Vestling, J. Olsson, and I. Katardjiev: Resistance electric field dependence and time drift of piezoresistive single crystalline silicon nanofilms. Proc. Chem. 1, 80 (2009).

    Article  CAS  Google Scholar 

  69. W.D. Pilkey: Peterson’s stress concentration factors (Wiley-Interscience, New York, 1997).

    Book  Google Scholar 

  70. R. Bashir, A. Gupta, G.W. Neudeck, M. McElfresh, and R. Gomez: On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications. J. Micromech. Microeng. 10, 483 (2000).

    Article  Google Scholar 

  71. J.B. Hannon, S. Kodambaka, F.M. Ross, and R.M. Tromp: The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69 (2006).

    Article  CAS  Google Scholar 

  72. D.V. Lang, H.G. Grimmeiss, E. Meijer, and M. Jaros: Complex nature of gold-related deep levels in silicon. Phys. Rev. B 22, 3917 (1980).

    Article  CAS  Google Scholar 

  73. C. Auth, C. Allen, A. Blattner, and D. Bergstrom: A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. Symposium on VLSI Technology, Honolulu, HI, 2012; 131.

  74. E.W. Greeneich and R.S. Muller: Acoustic-wave detection via a piezoelectric field-effect transducer. Appl. Phys. Lett. 20, 156 (1972).

    Article  CAS  Google Scholar 

  75. R. He, X. Feng, M.L. Roukes, and P. Yang: Self-transducing silicon nanowire electromechanical systems at room temperature. Nano Lett. 8, 1756 (2008).

    Article  Google Scholar 

  76. E. Mile, G. Jourdan, I. Bargatin, S. Labarthe, C. Marcoux, P. Andreucci, S. Hentz, C. Kharrat, E. Colinet, and L. Duraffourg: In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection. Nanotechnology 21, 165504 (2010).

    Article  CAS  Google Scholar 

  77. P. Singh, J. Miao, V. Pott, W.T. Park, and D.L. Kwong: Piezoresistive sensing performance of junctionless nanowire FET. IEEE Electron Devices Lett. 33, 1759 (2012).

    Article  Google Scholar 

  78. S. Zhang, L. Lou, and C. Lee: Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor. Appl. Phys. Lett. 100, 023111 (2012).

    Article  CAS  Google Scholar 

  79. M. Sansa, M. Fernandez-Regulez, A. San Paulo, and F. Perez-Murano: Electrical transduction in nanomechanical resonators based on doubly clamped bottom-up silicon nanowires. Appl. Phys. Lett. 101, 243115 (2012).

    Article  CAS  Google Scholar 

  80. P.E. Allain, F. Parrain, A. Bosseboeuf, S. Mâaroufi, P. Coste, and A. Walther: Large-range MEMS motion detection with Subangström noise level using an integrated piezoresistive silicon nanowire. J. Microelectromech. Syst. 22, 716 (2013).

    Article  CAS  Google Scholar 

  81. T. Iida, T. Itoh, D. Noguchi, and Y. Takano: Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms. J. Appl. Phys. 87, 675 (2000).

    Article  CAS  Google Scholar 

  82. P.E. Allain, X. Le Roux, F. Parrain, and A. Bosseboeuf: Large initial compressive stress in top-down fabricated silicon nanowires evidenced by static buckling. J. Micromech. Microeng. 23, 015014 (2013).

    Article  CAS  Google Scholar 

  83. S.W. Chung, J.Y. Yu, and J.R. Heath: Silicon nanowire devices. Appl. Phys. Lett. 76, 2068 (2000).

    Article  CAS  Google Scholar 

  84. J.F. Creemer, F. Fruett, G. Meijer, and P.J. French: The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance. IEEE Sens. J 1, 98 (2001).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Agence Nationale de la Recherche (PIGE ANR-2010-021). The author thanks S. Arscott for many fruitful discussions and for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. H. Rowe.

Additional information

This paper has been selected as an Invited Feature Paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowe, A.C.H. Piezoresistance in silicon and its nanostructures. Journal of Materials Research 29, 731–744 (2014). https://doi.org/10.1557/jmr.2014.52

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.52

Navigation