Skip to main content
Log in

The increased interface charge transfer in dye-sensitized solar cells based on well-ordered TiO2 nanotube arrays with different lengths

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The well-ordered TiO2 nanotube arrays with controlled aspect ratio are fabricated via potentiostatic anodization. The aspect ratio of TiO2 nanotube array can be tuned conveniently by changing the water content in electrolyte and anodization time. The formation of well-ordered TiO2 nanotube array is good for the photogenerated electron transfer. So, the well-ordered TiO2 nanotube array photoelectrodes have been used to fabricate dye-sensitized solar cells (DSSCs). It is found that, with the optimum nanotube length and aspect ratio, DSSCs with TiO2 nanotube array photoelectrodes show better photoelectric conversion efficiency (2.60%) than that with TiO2 nanoparticles on Ti foil photoelectrode. It is elucidated by the interfacial electron transport of DSSCs, which are characterized quantitatively, using the electrochemical impedance spectra. The DSSC with optimal nanotube length and aspect ratio displays the fastest interfacial electron transfer and longer electron lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

REFERENCES

  1. B. O’Regan and M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).

    Article  Google Scholar 

  2. U. Bach, D. Lupo, P. Comte, J-E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Grätzel: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 (1998).

    Article  CAS  Google Scholar 

  3. M. Grätzel: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788 (2009).

    Article  Google Scholar 

  4. A. Yella, H-W. Lee, H-N. Tsao, C. Yi, A-K. Chandiran, M-K. Nazeeruddin, E-W. Diau, C-Y. Yeh, S-M. Zakeeruddin, and M. Grätzel: Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629 (2011).

    Article  CAS  Google Scholar 

  5. Y-J. Kim, M-H. Lee, H-J. Kim, G. Lim, Y-S. Choi, N. Park, K. Kim, and W-I. Lee: Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv. Mater. 21, 3668 (2009).

    Article  CAS  Google Scholar 

  6. Q-F. Zhang, K. Park, J-T. Xi, D. Myers, and G-Z. Cao: Recent progress in dye-sensitized solar cells using nanocrystallite aggregates. Adv. Energy Mater. 1, 988 (2011).

    Article  CAS  Google Scholar 

  7. A. Mishra, M-K-R. Fischer, and P. Bäuerle: Metal-free organic dyes for dye-sensitized solar cells: From structure: Property relationships to design rules. Angew. Chem. Int. Ed. 48, 2474 (2009).

    Article  CAS  Google Scholar 

  8. G-L. Shang, J-H. Wu, M-L. Huang, J-M. Lin, Z. Lan, Y-F. Huang, and L-Q. Fan: Facile synthesis of mesoporous tin oxide spheres and their applications in dye-sensitized solar cells. J. Phys. Chem. C 116, 20140 (2012).

    Article  CAS  Google Scholar 

  9. B. O’Regan, K. Bakker, J. Kroeze, H. Smit, P. Sommeling, and J-R. Durrant: Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films. J. Phys. Chem. B 110, 17155 (2006).

    Article  Google Scholar 

  10. S. Sodergren, A. Hagfeldt, J. Olsson, and S-E. Lindquist: Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J. Phys. Chem. 98, 5552 (1994).

    Article  Google Scholar 

  11. K. Pan, Y. Dong, W. Zhou, G. Wang, Q. Pan, Y. Yuan, X. Miao, and G. Tian: TiO2-B nanobelt/anatase TiO2 nanoparticle heterophase nanostructure fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells. Electrochim. Acta 88, 263 (2013).

    Article  CAS  Google Scholar 

  12. A. Martinson, M. Goes, F. Fabregat-Santiago, J. Bisquert, M. Pellin, and J. Hupp: Electron transport in dye-sensitized solar cells based on ZnO nanotubes: Evidence for highly efficient charge collection and exceptionally rapid dynamics. J. Phys. Chem. A 113, 4015 (2009).

    Article  CAS  Google Scholar 

  13. L. Yang and W. Leung: Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells. Adv. Mater. 23, 4559 (2011).

    Article  CAS  Google Scholar 

  14. Z.Y. Liu and M. Misra: Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 4, 2196 (2010).

    Article  CAS  Google Scholar 

  15. G. Zhang, K. Pan, W. Zhou, Y. Qu, Q. Pan, B. Jiang, G. Tian, G. Wang, Y. Xie, Y. Dong, X. Miao, and C. Tian: Anatase TiO2 pillar–nanoparticle composite fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells. Dalton Trans. 41, 12683 (2012).

    Article  CAS  Google Scholar 

  16. B. Tan and Y. Wu: Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B 110, 15932 (2006).

    Article  CAS  Google Scholar 

  17. M. Yang, H. Jha, N. Liu, and P. Schmuki: Increased photocurrent response in Nb-doped TiO2 nanotubes. J. Mater. Chem. 21, 15205 (2011).

    Article  CAS  Google Scholar 

  18. K. Zhu and A-J. Frank: Converting light to electrons in oriented nanotube arrays used in sensitized solar cells. MRS Bull. 36, 446 (2011).

    Article  CAS  Google Scholar 

  19. J. Wang and Z-Q. Lin: Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem. Mater. 22, 579 (2010).

    Article  CAS  Google Scholar 

  20. M. Yang, D. Kim, H. Jha, K. Lee, J. Paul, and P. Schmuki: Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chem. Commun. 47, 2032 (2011).

    Article  CAS  Google Scholar 

  21. P-T. Hsiao, Y-J. Liou, and H. Teng: Electron transport patterns in TiO2 nanotube arrays based dye-sensitized solar cells under frontside and backside illuminations. J. Phys. Chem. C 115, 15018 (2011).

    Article  CAS  Google Scholar 

  22. M. Paulose, K. Shankar, O-K. Varghese, G-K. Mor, B. Hardin, and C-A. Grimes: Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 17, 1446 (2006).

    Article  CAS  Google Scholar 

  23. M. Paulose, K. Shankar, O-K. Varghese, G-K. Mor, and C-A. Grimes: Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J. Phys. D: Appl. Phys. 39, 2498 (2006).

    Article  CAS  Google Scholar 

  24. P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki: TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2, 45 (2010).

    Article  CAS  Google Scholar 

  25. Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D-A. Tryk, T. Murakami, and A. Fujishima: Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C 112, 253 (2008).

    Article  CAS  Google Scholar 

  26. K. Shankar, G-K. Mor, A. Fitzgerald, and C-A. Grimes: Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotubes in formamide-water mixtures. J. Phys. Chem. C 111, 21 (2007).

    Article  CAS  Google Scholar 

  27. L. Qi, Y. Ma, Q. Ouyang, Y. Zhang, L. Li, and Y. Chen: The controllable synthesis of chain-like TiO2 networks with multiwalled carbon nanotubes as templates and its application for dye-sensitized solar cells. J. Nanopart. Res. 14, 907 (2012).

    Article  Google Scholar 

  28. G-K. Mor, K. Shankar, M. Paulose, O-K. Varghese, and C-A. Grimes: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191 (2005).

    Article  CAS  Google Scholar 

  29. K. Pan, Y-Z. Dong, C-G. Tian, W. Zhou, G-H. Tian, B-F. Zhao, and H-G. Fu: TiO2-B narrow nanobelt/TiO2 nanoparticle composite photoelectrode for dye-sensitized solar cells. Electrochim. Acta 54, 7350 (2009).

    Article  CAS  Google Scholar 

  30. C. Longo, A-F. Nogueira, M-A. De Paoli, and H. Cachet: Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy. J. Phys. Chem. B 106, 5925 (2002).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Fund of China (Grant Nos. 51302047, 51072038, 51272050, and 61205113), the Program for New Century Excellent Talents in University (NECT-10-0049), the Outstanding Youth Fund of Heilongjiang Province (Grant No. JC201008), the 111 project (B13015) of Ministry Education of China to the Harbin Engineering University, and also the Fundamental Research Funds for the Central Universities of China for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, L., Yin, Z., Zhang, S. et al. The increased interface charge transfer in dye-sensitized solar cells based on well-ordered TiO2 nanotube arrays with different lengths. Journal of Materials Research 29, 745–752 (2014). https://doi.org/10.1557/jmr.2014.50

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.50

Navigation