Skip to main content
Log in

A simple model of plate-like crystallization with constant plate thickness

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A kinetic model of crystallization based on two-dimensional nucleation and growth of plate-like crystals with constant thickness is analyzed. It is shown that plate thickness required for nucleation is limited. The lower limit is determined by zero Gibbs’ free energy of transition, the upper one corresponds to the conditions when the critical cluster volume of nucleation is equal to two elementary kinetic units. Effects of plate thickness on crystallization kinetics are discussed. In the lower temperature range, creation of thicker plates is preferred. For a given plate thickness, frequency of the phase transition decreases with increasing temperature. Numerical calculations for α-polypropylene concern kinetics of primary nucleation and global phase transition in a system of one or several fractions of plate-like kinetic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE I.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.
FIG. 15.
FIG. 16.
FIG. 17.
FIG. 18.
FIG. 19.
FIG. 20.
FIG. 21.
FIG. 22.
TABLE II.
FIG. 23.

Similar content being viewed by others

References

  1. A. Ziabicki and B. Misztal-Faraj: Modeling of phase transitions in three-phase polymorphic systems: Part I. Basic equations and example simulation. J. Mater. Res. 26(13), 1586–1595 (2011).

    Article  Google Scholar 

  2. B. Misztal-Faraj and A. Ziabicki: Modeling of phase transitions in three-phase polymorphic systems: Part II. Effects of material characteristics on transition rates. J. Mater. Res. 26(13), 1596 (2011).

    Article  CAS  Google Scholar 

  3. A.N. Kolmogorov: On statistical theory of metal crystallization. Izv. Akad. Nauk SSSR, Ser. Math. 3, 355 (1937).

    Google Scholar 

  4. M. Avrami: Kinetics of phase change. I General theory. J. Chem. Phys. 7, 1103 (1939).

    Article  CAS  Google Scholar 

  5. M. Avrami: Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940).

    Article  CAS  Google Scholar 

  6. M. Avrami: Granulation, phase change, and microstructure. Kinetics of phase change. III. J. Chem. Phys. 9, 177 (1941).

    Article  CAS  Google Scholar 

  7. U.R. Evans: The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals. Trans. Faraday Soc. 41, 365 (1945).

    Article  CAS  Google Scholar 

  8. P. Sajkiewicz, A. Gradys, A. Ziabicki, and B. Misztal-Faraj: On the metastability of β phase in isotactic polypropylene: Experiments and numerical simulation. e-Polymers 124, 1–20 (2010).

    Google Scholar 

  9. A. Keller: A note on single crystals in polymers: Evidence of a folded-chain configuration. Philos. Mag. 2, 1171 (1957).

    Article  CAS  Google Scholar 

  10. J.D. Hoffman and J.I. Lauritzen Jr.: Crystallization of bulk polymers with chain folding: Theory of growth of lamellar spherulites. J. Res. Nat. Bur. Stand. 65A, 297 (1961).

    Article  CAS  Google Scholar 

  11. J.D. Hoffman: Theoretical aspects of polymer crystallization with chain folds: Bulk polymers. Soc. Plast. Eng. Trans. 4, 315 (1964).

    CAS  Google Scholar 

  12. J.D. Hoffman, G.T. Davis, and J.I. Lauritzen Jr.: The rate of crystallization of linear polymers with chain folding, in Treatise on Solid State Chemistry, Vol. 3, edited by N.B. Hannay (Plenum Press, New York, NY, 1976), pp. 497–614.

    Article  CAS  Google Scholar 

  13. A. Ziabicki: Nucleation-controlled multiphase transitions. J. Chem. Phys. 123, 174103 (2005).

    Article  Google Scholar 

  14. D. Turnbull: Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022 (1950).

    Article  CAS  Google Scholar 

  15. J. Frenkel: Kinetic Theory of Liquids (Oxford University Press, London, 1946).

    Google Scholar 

  16. Y.B. Zeldovich: Theory of formation of a new phase: Cavitation. Acta Phys.Chim. USSR 18, 1 (1943).

    CAS  Google Scholar 

  17. F.C. Frank and M. Tosi: On the theory of polymer crystallization. Proc. R. Soc. London, Ser. A 263, 323 (1961).

    Article  CAS  Google Scholar 

  18. B. Misztal-Faraj and A. Ziabicki: Effects of predetermined nuclei and limited transformation on polymorphic crystallization in a model polymer. J. Appl. Polym. Sci. 125, 4243 (2011).

    Article  Google Scholar 

  19. B. Monasse and J.M. Haudin: Growth transition and morphology change in polypropylene. Colloid Polym. Sci. 263, 822 (1985).

    Article  CAS  Google Scholar 

  20. D.W. Van Krevelen: Properties of polymers (Elsevier, Amsterdam, 2000), pp. 469, 597.

    Google Scholar 

  21. J.E. Mark: Physical Properties of Polymers Handbook (American Institute of Physics, Woodbury, NY, 1996), p. 424.

    Google Scholar 

  22. I.G. Voigt-Martin and L. Mandelkern: A quantitative electron-microscopic study of a linear polyethylene fraction crystallized at different temperature. J. Polym. Sci. 19, 1769–1790 (1981).

    CAS  Google Scholar 

Download references

Acknowledgment

The author acknowledges helpful discussions held with Professor A. Ziabicki and Professor L. Jarecki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Misztal-Faraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misztal-Faraj, B. A simple model of plate-like crystallization with constant plate thickness. Journal of Materials Research 28, 1224–1238 (2013). https://doi.org/10.1557/jmr.2013.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.74

Navigation