Skip to main content
Log in

Polystyrene composites with very high carbon nanotubes loadings by in situ grafting polymerization

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We introduce a novel method for producing polystyrene (PS)-grafted multiwalled carbon nanotubes (MWCNTs), which provides a direct route to composites where carbon nanotubes (CNTs) are the major component. Infrared and Raman spectroscopies confirmed that the MWCNTs were functionalized with PS. Thermogravimetric analysis showed that CNTs increase thermal stability of the composite up to a critical loading (∼40 wt%) beyond which high nanotube loadings decrease the polymer degradation temperature, as a consequence of the thermal properties of CNTs and the composite morphology. Even at loadings as high as 80 wt% MWCNTs, the composite is an effective masterbatch material for both solution- and melt-processing. These results show that in situ polymerizations can be flexible and robust techniques for nanocomposite processing, overcoming limitations of conventional processing techniques to produce nanocomposites with very high nanotube loadings, not achieved hitherto.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE I.
FIG. 7.
TABLE II.

Similar content being viewed by others

References

  1. D. Qian, G.J. Wagner, W.K. Liu, M-F. Yu, and R.S. Ruoff: Mechanics of carbon nanotubes. Appl. Mech. Rev. 55, 495 (2002).

    Article  Google Scholar 

  2. M. Terrones: Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res. 33, 419 (2003).

    Article  CAS  Google Scholar 

  3. E.T. Thostenson, Z. Ren, and T-W. Chou: Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 1899 (2001).

    Article  CAS  Google Scholar 

  4. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis: Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357 (2010).

    Article  CAS  Google Scholar 

  5. D.W. Schaefer and R.S. Justice: How nano are nanocomposites. Macromolecules 40, 8501 (2007).

    Article  CAS  Google Scholar 

  6. J-H. Du, J. Bai, and H-M. Cheng: The present status and key problems of carbon nanotube based polymer composites. Express Polym. Lett. 1, 253 (2007).

    Article  CAS  Google Scholar 

  7. M. Moniruzzaman and K.I. Winey: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194 (2006).

    Article  CAS  Google Scholar 

  8. S. Ramesh, L.M. Ericson, V.A. Davis, R.K. Saini, C. Kittrell, M. Pasquali, W.E. Billups, W.W. Adams, R.H. Hauge, and R.E. Smalley: Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation. J. Phys. Chem. B 108, 8794 (2004).

    Article  CAS  Google Scholar 

  9. J.L. Bahr, E.T. Mickelson, M.J. Bronikowski, R.E. Smalley, and J.M. Tour: Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem. Commun. 193 (2001).

    Google Scholar 

  10. S.D. Bergin, Z. Sun, P. Streich, J. Hamilton, and J.N. Coleman: New solvents for nanotubes: Approaching the dispersibility of surfactants. J. Phys. Chem. C 114, 231 (2010).

    Article  CAS  Google Scholar 

  11. K.D. Ausman, R. Piner, O. Lourie, and R.S. Ruoff: Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes. J. Phys. Chem. B 104, 8911 (2000).

    Article  CAS  Google Scholar 

  12. Y.P. Sun, K. Fu, Y. Lin, and W. Huang: Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 35, 1096 (2002).

    Article  CAS  Google Scholar 

  13. R.H. Baughman, A.A. Zakhidov, and W.A. de Heer: Carbon nanotubes–the route toward applications. Science 297, 787 (2004).

    Article  Google Scholar 

  14. A.M. Thayer: Carbon nanotubes by the metric ton. Chem. Eng. News 85, 29 (2007).

    Article  Google Scholar 

  15. Hyperion Catalysis International, FIBRIL Nanotube-Based Masterbatches: http://www.hyperioncatalysis.com/masterbatches2.htm (accessed August 10, 2011).

  16. K. Prashantha, J. Soulestin, M.F. Lacrampe, P. Krawczak, G. Dupin, and M. Claes: Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties. Compos. Sci. Technol. 69, 1756 (2009).

    Article  CAS  Google Scholar 

  17. C.A. Dyke and J.M. Tour: Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108, 11151 (2004).

    Article  CAS  Google Scholar 

  18. N.G. Sahoo, S. Rana, J.W. Cho, L. Li, and S.H. Chan: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010).

    Article  CAS  Google Scholar 

  19. X. Peng and S.S. Wong: Functional covalent chemistry of carbon nanotube surfaces. Adv. Mater. 21, 625 (2009).

    Article  CAS  Google Scholar 

  20. A.A. Mamedov, N.A. Kotov, M. Prato, D.M. Guldi, J.P. Wicksted, and A. Hirsch: Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat. Mater. 1, 190 (2002).

    Article  CAS  Google Scholar 

  21. M.L. Shofner, F.J. Rodriguez-Macias, R. Vaidyanathan, and E.V. Barrera: Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication. Composites Part A 34, 1207 (2003).

    Article  Google Scholar 

  22. M-K. Seo and S-J. Park: Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem. Phys. Lett. 395, 44 (2004).

    Article  CAS  Google Scholar 

  23. P. Pötschke, T.D. Fornes, and D.R. Paul: Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43, 3247 (2002).

    Article  Google Scholar 

  24. F.M. Blighe, W.J. Blau, and J.N. Coleman: Towards tough, yet stiff, composites by filling an elastomer with single-walled nanotubes at very high loading levels. Nanotechnology 19, 415709 (2008).

    Article  Google Scholar 

  25. G.T. Pham, Y-B. Park, S. Wang, Z. Liang, B. Wang, C. Zhang, P. Funchess, and L. Kramer: Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets. Nanotechnology 19, 325705 (2008).

    Article  Google Scholar 

  26. L. Song, H. Zhang, Z. Zhang, and S. Xie: Processing and performance improvements of SWNT paper reinforced PEEK nanocomposites. Composites Part A 38, 388 (2007).

    Article  Google Scholar 

  27. H. Hou, J.J. Ge, J. Zeng, Q. Li, D.H. Reneker, A. Greiner, and S.Z.D. Cheng: Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem. Mater. 17, 967 (2005).

    Article  CAS  Google Scholar 

  28. B. Fragneaud, K. Masenelli-Varlot, A. Gonzalez-Montiel, M. Terrones, and J.Y. Cavaillé: Mechanical behavior of polystyrene grafted carbon nanotubes/polystyrene nanocomposites. Compos. Sci. Technol. 68, 3265 (2008).

    Article  CAS  Google Scholar 

  29. Z. Yang, X. Chen, Y. Pu, L. Zhou, C. Chen, W. Li, L. Xu, B. Yi, and Y. Wang: Facile approach to obtain individual-nanotube dispersion at high loading in carbon nanotubes/polyimide composites. Polym. Adv. Technol. 18, 458 (2007).

    Article  CAS  Google Scholar 

  30. F. Liang, A.K. Sadana, A. Peera, J. Chattopadhyay, Z. Gu, R.H. Hauge, and W.E. Billups: A convenient route to functionalized carbon nanotubes. Nano Lett. 4, 1257 (2004).

    Article  CAS  Google Scholar 

  31. J. Chattopadhyay, A.K. Sadana, F. Liang, J.M. Beach, Y. Xiao, R.H. Hauge, and W.E. Billups: Carbon nanotube salts. Arylation of single-wall carbon nanotubes. Org. Lett. 7, 4067 (2005).

    Article  CAS  Google Scholar 

  32. J.J. Stephenson, A.K. Sadana, A.L. Higginbotham, and J.M. Tour: Highly functionalized and soluble multiwalled carbon nanotubes by reductive alkylation and arylation: The Billups reaction. Chem. Mater. 18, 4658 (2006).

    Article  CAS  Google Scholar 

  33. F. Liang, J.M. Beach, K. Kobashi, A.K. Sadana, Y.I. Vega-Cantu, J.M. Tour, and W.E. Billups: In situ polymerization initiated by single-walled carbon nanotube salts. Chem. Mater. 18, 4764 (2006).

    Article  CAS  Google Scholar 

  34. R. Kamalakaran, M. Terrones, T. Seeger, P. Kohler-Redlich, M. Rühle, Y.A. Kim, T. Hayashi, and M. Endo: Synthesis of thick and crystalline nanotube arrays by spray pyrolysis. Appl. Phys. Lett. 77, 3385 (2000).

    Article  CAS  Google Scholar 

  35. E.R. Alvizo-Paez, J.M. Romo-Herrera, H. Terrones, M. Terrones, J. Ruiz-García, and J.L. Hernández-López: Soft purification of N-doped and undoped multi- wall carbon nanotubes. Nanotechnology 19, 155701 (2008).

    Article  Google Scholar 

  36. S. Pekker, J.P. Salvetat, E. Jakab, J.M. Bonard, and L. Forro: Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B 105, 7938 (2001).

    Article  CAS  Google Scholar 

  37. J. Chattopadhyay, S. Chakraborty, A. Mukherjee, R. Wang, P.S. Engel, and W.E. Billups: SET mechanism in the functionalization of single-walled carbon nanotubes. J. Phys. Chem. C 111, 17928 (2007).

    Article  CAS  Google Scholar 

  38. G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C.Y. Ryu, and P.M. Ajayan: Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 125, 9258 (2003).

    Article  CAS  Google Scholar 

  39. T. Kashiwagi, E. Grulke, J. Hilding, R. Harris, W. Awad, and J. Douglas: Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol. Rapid Comm. 23, 761 (2002).

    Article  CAS  Google Scholar 

  40. Y. Liu, Z. Yao, and A. Adronov: Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling. Macromolecules 38, 1172 (2005).

    Article  CAS  Google Scholar 

  41. A.G. Cano-Márquez, F.J. Rodríguez-Macías, J. Campos-Delgado, C.G. Espinosa-González, F. Tristán-López, D. Ramírez-González, D. Cullen, D. Smith, M. Terrones, and Y.I. Vega-Cantú: Ex-MWNT: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9, 1527 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

We thank CONACYT for scholarship support (CGEG, AGCM); Beca-Mixta funding for a research stay at Georgia Tech (CGEG); and for Grants CB-2004-SEP-47337 and CB-2008-SEP-107082 (FJRM); CB-2004-SEP-47338, CB-2008-SEP-106942, Bilateral-project S-4183, CIAM-2006-01-58899, and FA9550-09-1-0026 (YIVC); Solvay Advanced Polymers (MLS), and NSF Award CMMI-0800019 (MLS). We also thank Daniel Ramírez-González, Jessica Campos-Delgado, David Smith, and David Cullen, for their aid during electron microscopy characterization; Yonathan Thio for use of the twin-screw extruder; Mauricio Terrones and Florentino López-Urías for helpful discussions. The authors also acknowledge Gladis J. Labrada-Delgado and Beatriz A. Rivera-Escoto, of the Laboratory for Nanoscience and Nanotechnology Research (LINAN) at IPICYT for their help in materials characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadira I. Vega-Cantú.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinosa-González, C.G., Rodríguez-Macías, F.J., Cano-Márquez, A.G. et al. Polystyrene composites with very high carbon nanotubes loadings by in situ grafting polymerization. Journal of Materials Research 28, 1087–1096 (2013). https://doi.org/10.1557/jmr.2013.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.38

Navigation