Skip to main content

Advertisement

Log in

Nano and micro scale analysis of dentin with in vitro and high speed atomic force microscopy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) has proven useful in the investigation of porous surfaces due to its nanoscale spatial resolution, micron scale range, compatibility with nonconducting materials, and even applicability ability to biological systems since it can operate in fluids. Since AFM directly measures the surface by contact, it is particularly suited for quantifying the roughness, and more appropriately for porous and particulate materials, the surface area. In this work, a multi-scale porous material, human molar dentin, was studied with AC mode AFM (both in-air and in-liquid), enabling extensive analyses both for plain dentin as well as specimens exposed to nanoparticle TiO2 containing toothpaste to approximate personal dental hygiene. Finally, high speed AFM is also demonstrated in vitro with equivalent results, except that the time required per image is reduced by several orders of magnitude from tens of minutes to as little as 6 s. Careful implementation of AFM, both at standard and high speeds, is therefore effective for investigating highly porous materials, including biological tissue, in environmentally or physiologically relevant conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. G. Binnig, C.F. Quate, and C. Gerber: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  2. D. Bonnell: Scanning Probe Microscopy and Spectroscopy Theory, Techniques, and Applications, 2nd ed. (Wiley-VCH, New York, 2001).

    Google Scholar 

  3. R.M. Ulfig, S.K. Pangrle, A.F. Myers, and J.D. Romero: Method for determining pore characteristics in porous materials. U.S. Patent No. 6,791,081. Sep. 14, 2004. Washington, DC: U.S. Patent and Trademark Office.

  4. S.M. Stevens, A.R. Loiola, P. Cubillas, L.R.D. da Silva, O. Terasaki, and M.W. Anderson: Hierarchical porous materials: Internal structure revealed by argon ion-beam cross-section polishing, HRSEM and AFM. Solid State Sci. 13, 745–749 (2011).

    Article  CAS  Google Scholar 

  5. S.I. Park, S.H. Chung, and A.H.N. Byoung-Woon: Scanning probe microscope capable of measuring samples having overhang structure. U.S. Patent Application 12/773, 649 (2008).

  6. S.J. Cho, B.W. Ahn, J. Kim, J.M. Lee, Y. Hua, Y.K. Yoo, and S. Park: Three-dimensional imaging of undercut and sidewall structures by atomic force microscopy. Rev. Sci. Instrum. 82, 023707 (2011).

    Article  Google Scholar 

  7. Y. Hua, C. Coggins, and S. Park: Advanced 3D metrology atomic force microscope, in Advanced Semiconductor Manufacturing Conference (ASMC), 2010 IEEE/SEMI, July 11–13, 2010 (IEEE), pp. 7–10.

  8. R. Nath, Y-H. Chu, N.A. Polomoff, R. Ramesh, and B.D. Huey: High speed piezoresponse force microscopy: <1 frame per second nanoscale imaging. Appl. Phys. Lett. 93, 072905–072905-3 (2008).

  9. B.D. Huey: AFM and acoustics: Fast, quantitative nanomechanical mapping. Annu. Rev. Mater. Res. 37, 351–385 (2007).

    Article  CAS  Google Scholar 

  10. B.D. Huey, R.N. Premnath, S. Lee, and N.A. Polomoff: High speed SPM applied for direct nanoscale mapping of the influence of defects on ferroelectric switching dynamics. J. Am. Ceram. Soc. 95, 1147–1162 (2012) <Go to ISI>://WOS:000302401600001.

    Article  CAS  Google Scholar 

  11. J.L. Bosse: High speed atomic force microscopy techniques for the efficient study of nanotribology. Master’s Theses. Storrs, CT, Paper 260, 2012 http://digitalcommons.uconn.edu/gs_theses/260.

    Google Scholar 

  12. T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda: A high-speed atomic force microscope for studying biological macromolecules. PNAS 98, 12468–12472 (2001) <Go to ISI>://000171806100034.

    Article  CAS  Google Scholar 

  13. A.D.L. Humphris, M.J. Miles, and J.K. Hobbs: A mechanical microscope: High-speed atomic force microscopy. Appl. Phys. Lett. 86(3), 034106 (2005) <Go to ISI>://000226864600094.

    Article  Google Scholar 

  14. A. Pyne, W. Marks, L. Picco, P.G. Dunton, A. Ulcinas, M.E. Barbour, S.B. Jones, J. Gimzewski, and M.J. Miles: High-speed atomic force microscopy of dental enamel dissolution in citric acid. Arch. Histol. Cytol. 72(4/5), 209–215 (2009).

    Article  Google Scholar 

  15. L.E. Bertassoni, S. Habelitz, M. Pugach, P.C. Soares, S.J. Marshall, and G.W. Marshall Jr.: Evaluation of surface structural and mechanical changes following remineralization of dentin. Scanning 32, 312–319 (2010).

    Article  CAS  Google Scholar 

  16. I. Petrou, R. Heu, M. Stranick, S. Lavender, L. Zaidel, D. Cummins, R.J. Sullivan, C. Hsueh, and J.K. Gimzewski: A breakthrough therapy for dentin hypersensitivity: How dental products containing 8% arginine and calcium carbonate work to deliver effective relief of sensitive teeth. J. Clin. Dent. 20, 23–31 (2009).

    Google Scholar 

  17. N. Silikas, D.C. Watts, K.E. England, and K.D. Jandt: Surface fine structure of treated dentine investigated with tapping mode atomic force microscopy (TMAFM). J. Dent. 27, 137–144 (1999).

    Article  CAS  Google Scholar 

  18. R. Kubinek, Z. Zapletalova, M. Vujtek, R. Novotny, H. Kolarova, H. Chmelickova, and J. Perina Jr.: Sealing of open dentinal tubules by laser irradiation: AFM and SEM observations of dentine surfaces. J. Mol. Recognit. 20, 476–482 (2007).

    Article  CAS  Google Scholar 

  19. Z. Zapletalova, R. Kubinek, M. Vujtek, and R. Novotny: Examination of dentin surface using AFM (our experience). Acta Medica (Hradec Kralove), 47, 343–346 (2004).

    Article  Google Scholar 

  20. S. Sharma, S.E. Cross, C. Hsueh, R.P. Wali, A.Z. Stieg, and J.K. Gimzewski: Nanocharacterization in dentistry. Int. J. Mol. Sci. 11, 2523–2545 (2010).

    Article  CAS  Google Scholar 

  21. S.V. Mello, E. Arvanitidou, M.A. Stranick, R. Santana, Y. Kutes, and B. Huey: Mode of action studies of a new desensitizing mouthwash containing 0.8% arginine, PVM/MA copolymer, pyrophosphates, and 0.05% sodium fluoride. J. Dent. 41S, S12–S19 (2013).

    Article  Google Scholar 

  22. Asylum Research. iDrive™ Magnetic Actuated Cantilever. (2013). Available from: http://www.asylumresearch.com/Products/iDrive/iDrive.shtml.

    Google Scholar 

  23. M. Austin, A. Herbert, R. Black, and P. Riches: Atomic force microscopy of bovine articular cartilage, in Proceedings of the 6th UKRI PG Conference in Biomedical Engineering and Medical Physics 2011 PGBIOMED 2011, edited by A. Syed and C. Hamilton, p. 17.

  24. P.A. George, B.C. Donose, and J.J. Cooper-White: Self-assembling polystyrene-block-poly (ethylene oxide) copolymer surface coatings: Resistance to protein and cell adhesion. Biomaterials 30, 2449–2456 (2009).

    Article  CAS  Google Scholar 

  25. L.M. Picco, L. Bozec, A. Ulcinas, D.J. Engledew, M. Antognozzi, M.A. Horton, and M.J. Miles: Breaking the speed limit with atomic force microscopy. Nanotechnology 18, 1–4 (2007).

    Article  Google Scholar 

  26. J.M. Wallace, Q. Chen, M. Fang, B. Erickson, B.G. Orr, and M.M. Banaszak Holl: Type I collagen exists as a distribution of nanoscale morphologies in teeth, bones, and tendons. Langmuir 26, 7349–7354 (2010).

    Article  CAS  Google Scholar 

  27. Y. Kutes: Nanocharacterization of Porous Materials with Atomic Force Microscopy. Master's Theses. Storrs, CT, Paper 262 http://digitalcommons.uconn.edu/gs_theses/262.

  28. V.P. Palumbo, A. Kovalskiy, H. Jain, and B.D. Huey: Direct investigation of silver photodissolution dynamics and reversibility in arsenic trisulphide thin films by atomic force microscopy. Nanotechnology 24(12), 125706 (2013) http://stacks.iop.org/0957-4484/24/125706.

    Article  Google Scholar 

  29. M. Addy and R. Shellis: Interaction between attrition, abrasion and erosion in tooth wear. Monogr. Oral Sci. 20, 17–31 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Partial support was provided by the NSF sponsored UPenn NSEC on Molecular Function at the Nano/Bio Interface, Grant No. 0832802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan D. Huey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutes, Y., Vyas, V. & Huey, B.D. Nano and micro scale analysis of dentin with in vitro and high speed atomic force microscopy. Journal of Materials Research 28, 2300–2307 (2013). https://doi.org/10.1557/jmr.2013.159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.159

Navigation