Skip to main content
Log in

Superstructural nanodomains of ordered carbon vacancies in nonstoichiometric ZrC0.61

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report here investigations on the superstructure modulation induced by the ordering of carbon vacancies in the nonstoichiometric zirconium carbide of ZrC0.61, which was prepared by spark plasma sintering (SPS) of the mechanochemically synthesized ZrCx nanopowders. The sintered ZrC0.61 is found to exhibit an interesting microstructure of interlaced laminated sheets. In contrast to the previous long duration post annealing for realization of the ordered carbon vacancies in the rocksalt-structured transition metal carbide, the ordered carbon vacancies are directly obtained during the SPS process, and no post-annealing period is necessary. With the help of transmission electron microscopy, the superstructural nanodomains with the average size of ∼30 nm are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.O. Pierson: Handbook of Refractory Carbides and Nitrides -Properties, Characteristics, Processing and Applications (William Andrew publishing/Noyes, Westwood, NJ, 1996).

    Google Scholar 

  2. V.N. Lipatnikov, A.A. Rempel, and A.I. Gusev: Ordering and hardness of nonstoichiometric titanium carbide. Int. J. Refract. Met. Hard Mater 15, 61 (1997).

    Article  CAS  Google Scholar 

  3. L.V. Zueva, V.N. Lipatnikov, and A.I. Gusev: Ordering effects on the microstructure and microhardness of nonstoichiometric titanium carbide TiCy. Inorg. Mater. 36, 695 (2000).

    Article  CAS  Google Scholar 

  4. V.N. Lipatnikov, W. Lengauer, P. Ettmayer, E. Keil, G. Groboth, and E. Kny: Effects of vacancy ordering on structure and properties of vanadium carbide. J. Alloys Compd. 261, 192 (1997).

    Article  CAS  Google Scholar 

  5. G. Morgan and M.H. Lewis: Hardness anisotropy in niobium carbide. J. Mater. Sci. 9, 349 (1974).

    Article  CAS  Google Scholar 

  6. A. Valeeva, D. Davydov, S. Rempel, and A. Rempel: Microstructure and microhardness of vanadium oxides in the range VO0.57–VO1.29. Inorg. Mater. 45, 905 (2009).

    Article  CAS  Google Scholar 

  7. D.B. Miracle and H.A. Lipsitt: Mechanical properties of fine-grained substoichiomebic titanium carbide. J. Am. Ceram. Soc. 66, 592 (1983).

    Article  CAS  Google Scholar 

  8. S. Tsurekawa, H. Kurishita, and H. Yoshinaga: High temperature deformation mechanism in substoichiometric titanium carbide-correlation with carbon vacancy ordering. J. Nucl. Mater. 169, 291 (1989).

    Article  CAS  Google Scholar 

  9. N. Obata and N. Nakazawa: Superlattice formation in zirconium-carbon system. J. Nucl. Mater. 60, 39 (1976).

    Article  CAS  Google Scholar 

  10. A.I. Gusev and A.A. Rempel: A study of the atomic ordering in the niobium carbide using the magnetic susceptibility method. Phys. Status Solidi A 84, 527 (1984).

    Article  CAS  Google Scholar 

  11. A.I. Gusev: Order-disorder transformation and phase equilibria in strongly nonstoichiometric compounds. Phys. Usp. 43, 1 (2000).

    Article  CAS  Google Scholar 

  12. V.P. Bulychev, R.A. Andrievskii, and L.B. Nezhevenko: The sintering of zirconium carbide. Powder Metall. Met. Ceram. 16, 273 (1977).

    Article  Google Scholar 

  13. A.I. Gusev and A.A. Rempel: Superstructures of nonstoichiometric interstitial compounds and the distribution functions of interstitial atoms. Phys. Status Solidi A 135, 15 (1993).

    Article  CAS  Google Scholar 

  14. H. Goretzki: Neutron diffraction studies on titanium-carbon and zirconium-carbon alloys. Phys. Status Solidi B 20, K141 (1967).

    Article  CAS  Google Scholar 

  15. C.H. De Novion and V. Moisy-Maurice: Order and disorder in carbides and nitrides. J. Phys. Colloq. 38 (C7), 211 (1977).

    Article  Google Scholar 

  16. V. Moisy-Maurice, N. Lorenzelli, C.H. De Novion, and P. Convert: Study of the order-disorder transition in TiC l-x. Acta Metall. 30, 1769 (1982).

    Article  CAS  Google Scholar 

  17. Y.Q. Fu, Y.W. Gu, C. Shearwood, J.K. Luo, A.J. Flewitt, and W.I. Milne: Spark plasma sintering of TiNi nanopowders for biological application. Nanotechnology 17, 5293 (2006).

    Article  CAS  Google Scholar 

  18. Z.H. Zhang, F.C. Wang, L. Wang, and S.K. Li: Sintering mechanism of large-scale ultrafine-grained copper prepared by SPS method. Mater. Lett. 62, 3987 (2008).

    Article  CAS  Google Scholar 

  19. Z.H. Zhang, F.C. Wang, S.K. Li, M.W. Shen, and S. Osamu: Microstructural characteristics of large-scale ultrafine-grained copper. Mater. Charact. 59, 329 (2008).

    Article  CAS  Google Scholar 

  20. C.Y. Xu, S.S. Jia, and Z.Y. Cao: Synthesis of Al-Mn-Ce alloy by the spark plasma sintering. Mater. Charact. 54, 394 (2005).

    Article  Google Scholar 

  21. K.H. Kim and K.B. Shim: The effect of lanthanum on the fabrication of ZrB2-ZrC composites by spark plasma sintering. Mater. Charact. 50, 31 (2003).

    Article  CAS  Google Scholar 

  22. W. Chen, U. Anselmi-Tamburini, J.E. Garay, J.G. Groza, and Z.A. Munir: Fundamental investigations on the spark plasma sintering/synthesis process I. Effect of DC pulsing on reactivity. Mater. Sci. Eng., A 394, 132 (2005).

    Article  Google Scholar 

  23. X.H. Wan, A.M. Hu, M. Li, C.K. Chang, and D. Mao: Performances of CaSiO3 ceramic sintered by spark plasma sintering. Mater. Charact. 59, 256 (2008).

    Article  CAS  Google Scholar 

  24. L.Y. Zhao, D.C. Jia, X.M. Duan, Z.H. Yang, and Y. Zhou: Low temperature sintering of ZrC-SiC composite. J. Alloys Compd. 509, 9816 (2011).

    Article  CAS  Google Scholar 

  25. G. Sreenivasulu, R. Gopalan, V. Chandrasekaran, G. Markandeyulu, K.G. Suresh, and B.S. Murty: Spark plasma sintered Sm2Co17-FeCo nanocomposite permanent magnets synthesized by high energy ball milling. Nanotechnology 19, 335701 (2008).

    Article  CAS  Google Scholar 

  26. Z.H. Zhang, F.C. Wang, L. Wang, and S.K. Li: Ultrafine-grained copper prepared by spark plasma sintering process. Mater. Sci. Eng., A 476, 201 (2008).

    Article  Google Scholar 

  27. C. Shearwood, Y.Q. Fu, L. Yu, and K.A. Khor: Spark plasma sintering of TiNi nanopowder. Scr. Mater. 52, 455 (2005).

    Article  CAS  Google Scholar 

  28. G.S. Kim, D.H. Shin, Y.I. Seo, and Y.D. Kim: Microstructure and mechanical properties of a ZnS-SiO2 composite prepared by ball milling and spark plasma sintering. Mater. Charact. 59, 1201 (2008).

    Article  CAS  Google Scholar 

  29. R. Kumar, K.H. Prakash, P. Cheang, and K.A. Khor: Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nanocomposite powders. Acta Mater. 53, 2327 (2005).

    Article  CAS  Google Scholar 

  30. J.Y. Xiang, S.C. Liu, W.T. Hu, Y. Zhang, C.K. Chen, P. Wang, J.L. He, D.L. Yu, B. Xu, Y.F. Lu, Y.J. Tian, and Z.Y. Liu: Mechanochemically activated synthesis of zirconium carbide nanoparticles at room temperature: A simple route to prepare nanoparticles of transition metal carbides. J. Eur. Ceram. Soc. 31, 1491 (2011).

    Article  CAS  Google Scholar 

  31. J.Y. Xiang, W.T. Hu, S.C. Liu, C.K. Chen, Y. Zhang, P. Wang, H.T. Wang, F.S. Wen, B. Xu, D.L. Yu, J.L. He, Y.J. Tian, and Z.Y. Liu: Spark plasma sintering of the nonstoichiometric ultrafine-grained titanium carbides with nano superstructural domains of the ordered carbon vacancies. Mater. Chem. Phys. 130, 352 (2011).

    Article  CAS  Google Scholar 

  32. V.N. Lipatnikov and A.I. Gusev: Annealing-induced ordering of bulk nonstoichiometric vanadium carbide. Inorg. Mater. 42, 14 (2006).

    Article  CAS  Google Scholar 

  33. A.H. De Novion and J.P. Landesman: Order and disorder in transition metal carbides and nitrides: Experimental and theoretical aspects. Pure Appl. Chem. 57, 1391 (1985).

    Article  Google Scholar 

  34. A.A. Valeeva, G. Tang, A.I. Gusev, and A.A. Rempel: Observation of structural vacancies. JETP Lett. 77, 25 (2003).

    Article  CAS  Google Scholar 

  35. S. Nagakura and T. Kusunoki: Structure of TiNx studied by electron diffraction and microscopy. J. Appl. Crystallogr. 10, 52 (1977).

    Article  Google Scholar 

  36. V. Moisy-Maurice and C.H. De Novion: An application of Ti-K x-ray absorption edges and fine structures to the study of substoichiometric titanium carbide TiC1-x. J. Phys. France 49, 1737 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Basic Research Program of China (Grant No. 2010CB731605, No. 50872118, and No. 58021001), National Science Fund for Distinguished Young Scholars (Grant No. 51025103) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Xiang, J., Zhang, Y. et al. Superstructural nanodomains of ordered carbon vacancies in nonstoichiometric ZrC0.61. Journal of Materials Research 27, 1230–1236 (2012). https://doi.org/10.1557/jmr.2012.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.72

Navigation