Skip to main content
Log in

Dislocations with edge components in nanocrystalline bcc Mo

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report high-resolution transmission electron microscopy (HRTEM) observation of a high density of dislocations with edge components (~1016 m-2) in nanocrystalline (NC) body-centered cubic (bcc) Mo prepared by high-pressure torsion. We also observed for the first time of the ½<111> and <001> pure edge dislocations in NC Mo. Crystallographic analysis and image simulations reveal that the best way using HRTEM to study dislocations with edge components in bcc systems is to take images along <110> zone axis, from which it is possible to identify ½<111> pure edge dislocations, and edge components of ½<111> and <001> mixed dislocations. The <001> pure edge dislocations can only be identified from <100> zone axis. The high density of dislocations with edge components is believed to play a major role in the reduction of strain rate sensitivity in NC bcc metals and alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
TABLE I
FIG. 2
FIG. 3
FIG. 4
TABLE II

Similar content being viewed by others

References

  1. Y. Guerin, G.S. Was, and S.J. Zinkle: Materials challenges for advanced nuclear energy systems. MRS Bull. 34 (1), 10 (2009).

    CAS  Google Scholar 

  2. U.S. DOE: A technology roadmap for generation IV nuclear energy systems. Nuclear Energy Advisory Committee and the Generation IV International Forum, GIF-002-00. (2002). http://www.gen-4.org/Technology/roadmap.htm.

    Google Scholar 

  3. D. Ali, N. Mushtaq, and M.Z. Butt: Investigation of active slip-systems in some body-centered cubic metals. J. Mater. Sci. 46 (11), 3812 (2011).

    Article  CAS  Google Scholar 

  4. N. Li, J. Wang, A. Misra, X. Zhang, J.Y. Huang, and J.P. Hirth: Twinning dislocation multiplication at a coherent twin boundary. Acta Mater. 59 (15), 5989 (2011).

    Article  CAS  Google Scholar 

  5. G. Monnet and D. Terentyev: Structure and mobility of the 1/2 < 111 > 112 edge dislocation in BCC iron studied by molecular dynamics. Acta Mater. 57 (5), 1416 (2009).

    Article  CAS  Google Scholar 

  6. R.P. Liu, S.F. Wang, R. Wang, and J.A. Jiao: The theoretical investigations of the core structure and the Peierls stress of the 1/2 < 1 1 1 >110 edge dislocation in Mo. Mater. Sci. Eng., A 527 (18-19), 4887 (2010).

    Article  CAS  Google Scholar 

  7. X.L. Liu, S.I. Golubov, C.H. Woo, and H.C. Huang: Glide of edge dislocations in tungsten and molybdenum. Mater. Sci. Eng., A 365 (1-2), 96 (2004).

    Article  CAS  Google Scholar 

  8. D.J. Bacon, Y.N. Osetsky, and Z. Rong: Computer simulation of reactions between an edge dislocation and glissile self-interstitial clusters in iron. Philos. Mag. 86 (25-26), 3921 (2006).

    Article  CAS  Google Scholar 

  9. E. Clouet, L. Ventelon, and F. Willaime: Dislocation core energies and core fields from first principles. Phys. Rev. Lett. 102 (5), 4 (2009).

    Article  CAS  Google Scholar 

  10. C. Domain and G. Monnet: Simulation of screw dislocation motion in iron by molecular dynamics simulations. Phys. Rev. Lett. 95 (21), 4 (2005).

    Article  CAS  Google Scholar 

  11. E.C. Cosgriff, P.D. Nellist, P.B. Hirsch, Z. Zhou, and D.J.H. Cockayne: ADF STEM imaging of screw dislocations viewed end-on. Philos. Mag. 90 (33), 4361 (2010).

    Article  CAS  Google Scholar 

  12. L.L. Hsiung: On the mechanism of anomalous slip in bcc metals. Mater. Sci. Eng., A 528 (1), 329 (2010).

    Article  CAS  Google Scholar 

  13. W. Sigle: High-resolution electron microscopy and molecular dynamics study of the (a/2)[111 screw dislocation in molybdenum. Philos. Mag. A 79 (5), 1009 (1999).

    Article  CAS  Google Scholar 

  14. D.A. Terentyev, Y.N. Osetsky, and D.J. Bacon: Effects of temperature on structure and mobility of the <1 0 0> edge dislocation in body-centred cubic iron. Acta Mater. 58 (7), 2477 (2010).

    Article  CAS  Google Scholar 

  15. F.R.N. Nabarro: Dislocations in Solids, V2 (North-Holland Press, Amsterdam, Netherlands, 1979).

    Google Scholar 

  16. V. Vitek, R.C. Perrin, and D.K. Bowen: Core structure of 1/2(111) screw dislocations in B C C crystals. Philos. Mag. 21 (173), 1049 (1970).

    Article  CAS  Google Scholar 

  17. V. Vitek: Theory of core structures of dislocations in body-centered cubic metals. Cryst. Lattice Defects. 5 (1), 1 (1974).

    CAS  Google Scholar 

  18. P.B. Hirsch, Z. Zhou, and D.J.H. Cockayne: Determination of the sign of screw dislocations viewed end-on by weak-beam diffraction contrast. Philos. Mag. 87 (34), 5421 (2007).

    Article  CAS  Google Scholar 

  19. R. Groger, K.J. Dudeck, P.D. Nellist, V. Vitek, P.B. Hirsch, and D.J.H. Cockayne: Effect of Eshelby twist on core structure of screw dislocations in molybdenum: Atomic structure and electron microscope image simulations. Philos. Mag. 91 (18), 2364 (2010).

    Article  CAS  Google Scholar 

  20. M.S. Duesbery and W. Xu: The motion of edge dislocations in body-centered cubic metals. Scr. Mater. 39 (3), 283 (1998).

    Article  Google Scholar 

  21. Y.H. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y.T. Zhu, Y.Z. Zhou, and E.L. Lavernia: High tensile ductility and strength in bulk nanostructured nickel. Adv. Mater. 20 (16), 3028 (2008).

    Article  CAS  Google Scholar 

  22. J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe: Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 49 (9), 1497 (2001).

    Article  CAS  Google Scholar 

  23. K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51 (19), 5743 (2003).

    Article  CAS  Google Scholar 

  24. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51 (4), 427 (2006).

    Article  CAS  Google Scholar 

  25. Y.T. Zhu, X.Z. Liao, and X.L. Wu: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57 (1), 1 (2012).

    Article  CAS  Google Scholar 

  26. X.L. Wu, X.Z. Liao, S.G. Srinivasan, F. Zhou, E.J. Lavernia, R.Z. Valiev, and Y.T. Zhu: New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys. Rev. Lett. 100 (9), 095701 (2008).

    Article  CAS  Google Scholar 

  27. Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, S.N. Mathaudhu, and L.J. Kecskes: Twinning partial multiplication at grain boundary in nanocrystalline fcc metals. Appl. Phys. Lett. 95 (3), 031909 (2009).

    Article  CAS  Google Scholar 

  28. Y.M. Wang, E. Ma, R.Z. Valiev, and Y.T. Zhu: Tough nanostructured metals at cryogenic temperatures. Adv. Mater. 16 (4), 328 (2004).

    Article  CAS  Google Scholar 

  29. X.L. Wu, Y.T. Zhu, Y.G. Wei, and Q. Wei: Strong strain hardening in nanocrystalline nickel. Phys. Rev. Lett. 103 (20), 205504 (2009).

    Article  CAS  Google Scholar 

  30. Y.H. Zhao, J.E. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu: Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv. Mater. 18 (22), 2949 (2006).

    Article  CAS  Google Scholar 

  31. Y.T. Zhu and X.Z. Liao: Nanostructured metals - retaining ductility. Nat. Mater. 3 (6), 351 (2004).

    Article  CAS  Google Scholar 

  32. G.M. Cheng, H. Yuan, W.W. Jian, W.Z. Xu, P.C. Millett, and Y.T. Zhu: Deformation-induced ? phase in nanocrystalline Mo. Scr. Mater. 68 (2), 130 (2013).

    Article  CAS  Google Scholar 

  33. Q. Wei, Z.L. Pan, X.L. Wu, B.E. Schuster, L.J. Kecskes, and R.Z. Valiev: Microstructure and mechanical properties at different length scales and strain rates of nanocrystalline tantalum produced by high-pressure torsion. Acta Mater. 59 (6), 2423 (2011).

    Article  CAS  Google Scholar 

  34. Q. Wei, H.T. Zhang, B.E. Schuster, K.T. Ramesh, R.Z. Valiev, L.J. Kecskes, R.J. Dowding, L. Magness, and K. Cho: Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion. Acta Mater. 54 (15), 4079 (2006).

    Article  CAS  Google Scholar 

  35. J.W. Edwards, R. Speiser, and H.L. Johnston: High temperature structure and thermal expansion of some metals as determined by x-ray diffraction data. 1. Platinum, tantalum, niobium, and molybdenum. J. Appl. Phys. 22 (4), 424 (1951).

    Article  CAS  Google Scholar 

  36. A.P. Zhilyaev and T.G. Langdon: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53 (6), 893 (2008).

    Article  CAS  Google Scholar 

  37. H.G. Jiang, Y.T. Zhu, D.P. Butt, I.V. Alexandrov, and T.C. Lowe: Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater. Sci. Eng., A. 290, 128 (2000).

    Article  Google Scholar 

  38. S. Plimpton: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117 (1), 1 (1995).

    Article  CAS  Google Scholar 

  39. M.S. Daw and M.I. Baskes: Embedded-atom method - derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B. 29 (12), 6443 (1984).

    Article  CAS  Google Scholar 

  40. Y.N. Osetsky and D.J. Bacon: An atomic-level model for studying the dynamics of edge dislocations in metals. Model. Simul. 11 (4), 427 (2003).

    Article  CAS  Google Scholar 

  41. C.T. Koch: Determination of core structure periodicity and point defect density along dislocations. Ph.D. Thesis, Arizona State University, 2002.

    Google Scholar 

  42. J.C.H. Spence, in Experimental High Resolution Electron Microscopy (Clarendon Press, Oxford, UK, 1980).

    Google Scholar 

  43. G.M. Cheng, Y.X. Tian, L.L. He, and J.T. Guo: Orientation relationship and interfacial structure between alpha-Nb(5)Si(3) and Nb solid solution in the eutectic lamellar structure. Philos. Mag. 89 (31), 2801 (2009).

    Article  CAS  Google Scholar 

  44. Q. Wei: Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses. J. Mater. Sci. 42 (5), 1709 (2007).

    Article  CAS  Google Scholar 

  45. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng., A. 381 (1-2), 71 (2004).

    Article  CAS  Google Scholar 

  46. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed. (John Wiley & Sons, New York, 1992).

    Google Scholar 

  47. S. Amelinckx: Dislocations in Particular Structures (North-Holland Publishing Company, Amsterdam, Netherlands, 1979).

    Google Scholar 

  48. G.M. Cheng, W.W. Jian, W.Z. Xu, H. Yuan, P.C. Millett, and Y.T. Zhu: Grain size effect on deformation mechanisms of nanocrystalline bcc metal. Mater. Res. Lett. ifirst, 1 (2012). http://www.tandfonline.com/doi/abs/10.1080/21663831.2012.739580.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Laboratory Directed Research and Development program office of the Idaho National Laboratory. The authors wish to thank Dr. Dieter Wolf whose insight and discussions with the authors inspired and initiated the current study on bcc metals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. T. Zhu.

Additional information

Supplementary Material

Supplementary material can be viewed in this issue of the Journal of Materials Research by visiting http://joumals.cambridge.org/jmr.

Supplementary Material

Supplementary Material

Supplementary material can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, G.M., Xu, W.Z., Jian, W.W. et al. Dislocations with edge components in nanocrystalline bcc Mo. Journal of Materials Research 28, 1820–1826 (2013). https://doi.org/10.1557/jmr.2012.403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.403

Navigation