Skip to main content
Log in

Primary dendrite distribution in directionally solidified Sn–36 at.% Ni peritectic alloy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The primary dendrite arm spacing and its distribution at the solid–liquid interface has been examined in directionally solidified Sn–36 at.% Ni peritectic alloys under constant temperature gradient in a range of growth rates (2–200 μm/s). Statistical analysis of the primary dendrite arm spacing on transverse sections has been carried out using the minimum spanning tree and Voronoi polygon. The frequency distribution of the number of nearest neighbors determined by the Voronoi polygon suggested that the arrangement of dendrites at the solid–liquid interface could be visualized as hexagonal tessellation. The primary dendrite arm spacing determined by the conventional area counting method and minimum spanning tree all decreased with increasing growth rate, and a range of primary dendrite spacing was present during solidification. The range first increased with increasing growth rate, but when the growth rate exceeded 20 μm/s, it turned to decrease, which can be attributed to disorder induced by growth rate and interdendritic convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. S.N. Tewari, Y.H. Weng, G.L. Ding, and R. Trivedi: Cellular array morphology during directional solidification. Metall. Mater. Trans. A 33, 1229 (2002).

    Article  Google Scholar 

  2. S.P. O’Dell, G.L. Ding, and S.N. Tewari: Cell/dendrite distribution in directionally solidified hypoeutectic Pb-Sb alloys. Metall. Mater. Trans. A 30, 2159 (1999).

    Article  Google Scholar 

  3. B. Billia, H. Jamgotchian, and H. Nguyen Thi: Statistical analysis of the disorder of two-dimensional cellular arrays in directional solidification. Metall. Mater. Trans. A 22, 3041 (1991).

    Article  Google Scholar 

  4. N. Noel, H. Jamgotchian, and B. Billia: In situ and real-time observation of the formation and dynamics of a cellular interface in a succinonitrile-0.5wt% acetone alloy directionally solidified in a cylinder. J. Cryst. Growth 181, 117 (1997).

    Article  Google Scholar 

  5. L. Sturz and G. Zimmermann: Investigations on transient directional solidification under microgravity on sounding rocket missions. Microgravity Sci. Technol. 18, 160 (2005).

    Article  Google Scholar 

  6. B. Kauerauf, G. Zimmermann, S. Rex, M. Mathes, and F. Grote: Directional cellular growth of succinonitrile-0.075wt% acetone bulk samples Part 1: Results of space experiments. J. Cryst. Growth 223, 265 (2001).

    Article  CAS  Google Scholar 

  7. B. Kauerauf, G. Zimmermann, S. Rexa, B. Billia, H. Jamgotchian, and J.D. Hunt: Directional cellular growth of succinonitrile-0.075 wt% acetone bulk samples Part 2: Analysis of cellular pattern. J. Cryst. Growth 223, 277 (2001).

    Article  CAS  Google Scholar 

  8. L. Sturz, H.J. Diepers, G. Zimmermann, and S. Rex: Directional solidification of cellular arrays in transparent alloys. Microgravity Sci. Technol. 16, 116 (2005).

    Article  CAS  Google Scholar 

  9. Y.Q. Su, L.S. Luo, J.J. Guo, X.Z. Li, and H.Z. Fu: Spacing selection of cellular peritectic coupled growth during directional solidification of Fe–Ni peritectic alloys. J. Alloys Compd. 474, L14 (2009).

    Article  CAS  Google Scholar 

  10. L.S. Luo, Y.Q. Su, X.Z. Li, J.J. Guo, H.M. Yang, and H.Z. Fu: Producing well aligned in situ composites in peritectic systems by directional solidification. Appl. Phys. Lett. 92, 061903 (2008).

    Article  Google Scholar 

  11. M. Vandyoussefi, H.W. Kerr, and W. Kurz: Two-phase growth in peritectic Fe-Ni alloys. Acta Mater. 48, 2297 (2000).

    Article  CAS  Google Scholar 

  12. X.W. Hu, H. Yan, W.J. Chen, S.M. Li, and H.Z. Fu: Effect of sample diameter on primary and secondary dendrite arm spacings during directional solidification of Pb-26wt.%Bi hypo-peritectic alloy. Rare Met. 30, 424 (2011).

    Article  CAS  Google Scholar 

  13. D. Ma, W. Xu, S.C. Ng, and Y. Li: On secondary dendrite arm coarsening in peritectic solidification. Mater. Sci. Eng., A 390, 52 (2005).

    Article  Google Scholar 

  14. H. Zhong, S.M. Li, L. Liu, H.Y. Lü, G.R. Zou, and H.Z. Fu: Secondary dendrite arm coarsening and peritectic reaction in NdFeB alloys. J. Cryst. Growth 311, 420 (2009).

    Article  CAS  Google Scholar 

  15. K. Biswas, R. Hermann, H. Wendrock, J. Priede, G. Gerbeth, and B. Buechner: Effect of melt convection on the secondary dendritic arm spacing in peritectic Nd-Fe-B alloy. J. Alloys Compd. 480, 295 (2009).

    Article  CAS  Google Scholar 

  16. C. Dussert, G. Rasigni, M. Rasigni, J. Palmer, and A. Llebaria: Minimal spanning tree: A new approach to study order and disorder. Phys. Rev. B: Condens. Matter 34, 3528 (1986).

    Article  CAS  Google Scholar 

  17. S.H. Han and R. Trivedi: Primary spacing selection in directionally solidified alloys. Acta Mater. 42, 25 (1994).

    Article  CAS  Google Scholar 

  18. Q.Y. Pan, W.D. Huang, X. Lin, and Y.H. Zhou: Primary spacing selection of Cu-Mn alloy under laser rapid solidification condition. J. Cryst. Growth 181, 109 (1997).

    Article  CAS  Google Scholar 

  19. W.D. Huang, X.G. Geng, and Y.H. Zhou: Primary spacing selection of constrained dendritic growth. J. Cryst. Growth 134, 105 (1993).

    Article  CAS  Google Scholar 

  20. G.L. Ding, W.D. Huang, X. Huang, X. Lin, and Y.H. Zhou: On primary dendritic spacing during unidirectional solidification. Acta Mater. 44, 3705 (1996).

    Article  CAS  Google Scholar 

  21. S.Z. Lu and J.D. Hunt: A numerical analysis of dendritic and cellular array growth: The spacing adjustment mechanisms. J. Cryst. Growth 123, 17 (1992).

    Article  Google Scholar 

  22. J.A. Warren and J.S. Langer: Prediction of dendritic spacings in a directional-solidification experiment. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top. 47, 2702 (1993).

    Article  CAS  Google Scholar 

  23. H. Kaya, E. Çadırlı, K. Keşlioğlu, and N. Maraşlı: Dependency of the dendritic arm spacings and tip radius on the growth rate and composition in the directionally solidified succinonitrile-carbon tetrabromide alloys. J. Cryst. Growth 276, 583 (2005).

    Article  CAS  Google Scholar 

  24. J.L. Fan, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu: Dependency of microhardness on solidification processing parameters and microstructure characteristics in the directionally solidified Ti-46Al-0.5W-0.5Si alloy. J. Alloys Compd. 504, 60 (2010).

    Article  CAS  Google Scholar 

  25. C. Schmetterer, H. Flandorfer, W.K. Richter, U. Saeed, M. Kauffman, P. Roussel, and H. Ipser: A new investigation of the system Ni-Sn. Intermetallics 15, 869 (2007).

    Article  CAS  Google Scholar 

  26. J. Hui, R. Tiwari, X. Wu, S.N. Tewari, and R. Trivedi: Primary dendrite distribution and disorder during directional solidification of Pb-Sb alloys. Metall. Mater. Trans. A 33, 3499 (2002).

    Article  Google Scholar 

  27. R.C. Prim: Shortest connection networks and some generalizations. Bell Syst. Technol. J. 36, 1389 (1957).

    Article  Google Scholar 

  28. W. Schroeder, K. Martin, and B. Lorensen: The Visualization Toolkit, 3rd ed., (Prentice-Hall PTR, Upper Saddle River, NJ, 1998).

    Google Scholar 

  29. J.D. Hunt and S.Z. Lu: Numerical modeling of cellular/dendritic array spacing and structure predictions. Metall. Mater. Trans. A 27, 611 (1996).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was supported by the National Natural Science Foundation of China (Grants No. 51071062, 51274077, and 51271068), Open Project of State Key Lab of Mold and Die Technology of Huazhong University of Science and Technology (Grant No. 2011-P03), The Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2013002), and Project 973 (Grant No. 2011CB610406).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, P., Li, X., Su, Y. et al. Primary dendrite distribution in directionally solidified Sn–36 at.% Ni peritectic alloy. Journal of Materials Research 28, 740–746 (2013). https://doi.org/10.1557/jmr.2012.383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.383

Navigation