Skip to main content
Log in

Effect of Zn, Au, and In on the polymorphic phase transformation in Cu6Sn5 intermetallics

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cu6Sn5 is a critical intermetallic compound in soldering operations. Conventional equilibrium phase diagrams show that this compound is of either a hexagonal or monoclinic structure at temperatures above and below 186 °C, respectively. Under nonequilibrium conditions, the crystal structure is dependent on composition, temperature, and processing history. The effect of Zn, Au, and In on the hexagonal to monoclinic polymorphic transformation in Cu6Sn5 intermetallics is investigated using variable temperature synchrotron powder x-ray diffraction and differential scanning calorimetry. It is revealed that, as in the case of trace Ni additions, the alloying elements Zn and Au completely stabilize the hexagonal Cu6Sn5 and prevent the phase transformation. In contrast, In additions only partially stabilize the hexagonal Cu6Sn5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. K. Nogita, C.M. Gourlay, S.D. McDonald, Y.Q. Wu, J. Read, and Q.F. Gu: Kinetics of the ?–?’ transformation in Cu6Sn5. Scr. Mater. 65, 922 (2011).

    Article  CAS  Google Scholar 

  2. K. Nogita: Stabilization of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys. Intermetallics 18, 145 (2010).

    Article  CAS  Google Scholar 

  3. C.Y. Yu and J.G. Duh: Stabilization of hexagonal Cu6(Sn, Zn)5 by minor Zn doping of Sn-based solder joints. Scr. Mater. 65, 783 (2011).

    Article  CAS  Google Scholar 

  4. G. Ghosh and M. Asta: Phase stability, phase transformations, and elastic properties of Cu6Sn5: Ab initio calculations and experimental results. J. Mater. Res. 20, 3102 (2005).

    Article  CAS  Google Scholar 

  5. A.K. Larsson, L. Stenberg, and S. Lidin: Crystal structure modulations in ?-Cu5Sn4. Z. für Kristallographie 210, 832 (1995).

    CAS  Google Scholar 

  6. H. Okamoto: Phase Diagrams of Dilute Binary Alloys (ASM International, Materials Park, OH, 2002).

    Google Scholar 

  7. M. Li, Z. Zhang, and J. Kim: Polymorphic transformation mechanism of ? and ?’ in single crystalline Cu6Sn5. Appl. Phys. Lett. 98, 201901 (2011).

    Article  Google Scholar 

  8. U. Schwingenschlögl, Di C. Paola, K. Nogita, and C.M. Gourlay: The influence of Ni additions on the relative stability of ? and ?’ Cu6Sn5. Appl. Phys. Lett. 96, 061908 (2010).

    Article  Google Scholar 

  9. T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel: Impurity and alloying effects on interfacial reaction layers in Pb-free soldering. Mater. Sci. Eng., R 68, 1 (2010).

    Article  Google Scholar 

  10. Z. Luo, L. Wang, Q. Fu, C. Cheng, and J. Zhao: Formation of interfacial ?’-Cu6Sn5 in Sn–0.7Cu/Cu solder joints during isothermal aging. J. Mater. Res. 26, 1468 (2011).

    Article  CAS  Google Scholar 

  11. D. Mu, J. Read, Y. Yang, and K. Nogita: Thermal expansion of Cu6Sn5 and (Cu, Ni)6Sn5. J. Mater. Res. 26, 2660 (2011).

    Article  CAS  Google Scholar 

  12. C.Y. Chou and S.W. Chen: Phase equilibria of the Sn–Zn–Cu ternary system. Acta Mater. 54, 2393 (2006).

    Article  CAS  Google Scholar 

  13. K. Nogita and T. Nishimura: Nickel-stabilized hexagonal (Cu, Ni)6Sn5 in Sn–Cu–Ni lead-free solder alloys. Scr. Mater. 59, 191 (2008).

    Article  CAS  Google Scholar 

  14. K. Nogita, C. Gourlay, and T. Nishimura: Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates. JOM 61, 45 (2009).

    Article  CAS  Google Scholar 

  15. K. Nogita, D. Mu, S.D. McDonald, J. Read, and Y.Q. Wu: Effect of Ni on phase stability and thermal expansion of Cu6-xNixSn5 (X = 0, 0.5, 1, 1.5 and 2). Intermetallics 26, 78 (2012).

    Article  CAS  Google Scholar 

  16. S. Lidin and S.Y. Piao: The structure of Cu6Sn5-xSbx–Large effects of subtle doping. Z. für anorganische und allgemeine Chemie 635, 611 (2009).

    Article  CAS  Google Scholar 

  17. F. Wang, X. Ma, and Y. Qian: Improvement of microstructure and interface structure of eutectic Sn–0.7 Cu solder with small amount of Zn addition. Scr. Mater. 53, 699 (2005).

    Article  CAS  Google Scholar 

  18. F. Izumi and K. Momma: Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15 (2007).

    Article  CAS  Google Scholar 

  19. K.O. Lee, J.W. Morris, and F. Hua: Martensitic transformation in Sn-rich SnIn solder joints. J. Electron. Mater. 41, 336 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the University of Queensland-Nihon Superior collaborative research program. PXRD experiments were performed at the Australian Synchrotron Powder Diffraction Beamline (Project ID: AS121/PD/4524). The author thanks Mr. J. Read of The University of Queensland for valuable discussions and sample preparation; and the Queensland Node of the Australian National Fabrication Facility (ANFF-Q) at the University of Queensland for use of the DSC facility. G.Z. is financially supported by a University of Queensland International (UQI) Scholarship and a China Scholarship Council (CSC) Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, G., McDonald, S.D., Gu, Q. et al. Effect of Zn, Au, and In on the polymorphic phase transformation in Cu6Sn5 intermetallics. Journal of Materials Research 27, 2609–2614 (2012). https://doi.org/10.1557/jmr.2012.247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.247

Navigation