Skip to main content
Log in

A plastic damage model for finite element analysis of cracking of silicon under indentation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A modified plastic damage model that accounts for tensile damage and compressive plasticity as well as interactions among them is adopted to simulate the indentation-induced cracking of silicon under Berkovich, cube corner, and Vickers indenters. Simulations with this model capture not only the well-known cracking geometries in indented ceramics, such as radial, median, lateral, and half penny (Vickers indenter) cracks, but also the recent experimentally discovered quarter penny cracks under Berkovich and cube corner pyramidal indenters. The quarter penny cracks are found to be formed by the coalescence of radial and median cracks for the first time in the simulation. Loads at which radial and half penny cracks are initiated in silicon are generally close to the experimental values reported in the literature, and the crack lengths on the sample surface agree well with both the current experimental measurements and analytical results by fracture mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.E. Petersen: Silicon as a mechanical material. Proc. IEEE 70 420 (1982)

    CAS  Google Scholar 

  2. R.F. Cook: Strength and sharp contact fracture of silicon. J. Mater. Sci. 41 841 (2006)

    Article  CAS  Google Scholar 

  3. S. Johansson, J.A. Schweitz: Contact damage in single-crystalline silicon investigated by cross-sectional transmission electron microscopy. J. Am. Ceram. Soc. 71 617 (1988)

    Article  CAS  Google Scholar 

  4. B.R. Lawn, D.B. Marshall, P. Chantikul: Mechanics of strength-degrading contact flaws in silicon. J. Mater. Sci. 16 1769 (1981)

    Article  CAS  Google Scholar 

  5. M.G. Walls, M.M. Chaudhri, T.B. Tang: STM profilometry of low-load Vickers indentations in a silicon crystal. J. Phys. D: Appl. Phys. 25 500 (1992)

    Article  CAS  Google Scholar 

  6. J.E. Bradby, J.S. Williams, J. Wong-Leung: Mechanical deformation in silicon by micro-indentation. J. Mater. Res. 16 1500 (2001)

    Article  CAS  Google Scholar 

  7. H. Saka, A. Shimantani, M. Suganuma, M. Suprijadi: Transmission electron microscopy of amorphization and phase transformation beneath indents in Si. Philos. Mag. A 82 1971 (2002)

    Article  CAS  Google Scholar 

  8. B.R. Lawn: Hertzian fracture in single crystals with the diamond. J. Appl. Phys. 39 4828 (1968)

    Article  CAS  Google Scholar 

  9. A.B. Mann, D. van Heerden, J.B. Pethica, T.P. Weihs: The transformation of Si under point contacts. J. Mater. Res. 15 1754 (2000)

    Article  CAS  Google Scholar 

  10. L. Zhang, I. Zarudi: Towards a deeper understanding of plastic deformation in mono-crystalline silicon. Int. J. Mech. Sci. 43 1985 (2001)

    Article  Google Scholar 

  11. A.M. Minor, E.T. Lilleodden, M. Jin, E.A. Stach, D.C. Chrzan, J.W. Morris: Room temperature dislocation plasticity in silicon. Philos. Mag. 85 323 (2005)

    Article  CAS  Google Scholar 

  12. B.R. Lawn, A.G. Evans: A model for crack initiation in elastic/plastic indentation fields. J. Mater. Sci. 12 2195 (1977)

    Article  CAS  Google Scholar 

  13. B.R. Lawn, A.G. Evans, D.B. Marshall: Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc. 63 574 (1980)

    Article  CAS  Google Scholar 

  14. S.S. Chiang, D.B. Marshall, A.G. Evans: The response of solids to elastic/plastic indentation. I. Stress and residual stresses. J. Appl. Phys. 53 298 (1982)

    Article  CAS  Google Scholar 

  15. S.S. Chiang, D.B. Marshall, A.G. Evans: The response of solids to elastic/plastic indentation. II. Stress and residual stresses. J. Appl. Phys. 53 312 (1982)

    Article  CAS  Google Scholar 

  16. E.H. Yoff: Elastic stress fields caused by indenting brittle materials. Philos. Mag. A 46 617 (1982)

    Article  Google Scholar 

  17. K. Zeng, A.E. Giannakopoulos, D.J. Rowcliffe: Vickers indentations in glass. II. Comparison of finite element analysis and experiments. Acta Metall. Mater. 41 1945 (1995)

    Article  Google Scholar 

  18. W. Zhang, G. Subhash: An elastic-plastic-cracking model for finite element analysis of indentation cracking in brittle materials. Int. J. Solids Struct. 38 5893 (2001)

    Article  Google Scholar 

  19. A. Muchtar, L.C. Lim, K.H. Lee: Finite element analysis of Vickers indentation cracking processes in brittle solids using elements exhibiting cohesive post-failure behavior. J. Mater. Sci. 38 235 (2003)

    Article  CAS  Google Scholar 

  20. J. Yan, A.M. Karlsson, X. Chen: On internal cone cracks induced by conical indentation in brittle materials. Eng. Fract. Mech. 74 2535 (2007)

    Article  Google Scholar 

  21. A. Yonezu, B. Xu, X. Chen: Indentation induced lateral crack in ceramics with surface hardening. Mater. Sci. Eng., A 507 226 (2009)

    Article  CAS  Google Scholar 

  22. A.E. Giannakopoulos, P.L. Larsson, R. Vestergaard: Analysis of Vickers indentation. Int. J. Solids Struct. 31 2679 (1994)

    Article  Google Scholar 

  23. P.L. Larsson, A.E. Giannakopoulos: Analysis of Berkovich indentation. Int. J. Solids Struct. 33 221 (1996)

    Article  Google Scholar 

  24. I. Zarudi, L.C. Zhang, W.C.D. Cheong, T.X. Yu: The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters. Acta Mater. 53 479 (2005)

    Article  CAS  Google Scholar 

  25. J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain: Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl. Phys. Lett. 77 3749 (2000)

    Article  CAS  Google Scholar 

  26. J.S. Williams, Y. Chen, J. Wong-Leung, A. Kerr, M.V. Swain: Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters. J. Mater. Res. 14 2338 (1999)

    Article  CAS  Google Scholar 

  27. L. Zhang, M. Mahdi: The plastic behavior of silicon subjected to micro-indentation. J. Mater. Sci. 31 5671 (1996)

    Article  CAS  Google Scholar 

  28. A.E. Giannakopoulos, P.L. Larsson: Analysis of pyramid indentation of pressure-sensitive hard metals and ceramics. Mech. Mater. 25 1 (1997)

    Article  Google Scholar 

  29. P.L. Larsson, A.E. Giannakopoulos: Tensile stresses and their implication to cracking at pyramid indentation of pressure-sensitive hard metals and ceramics. Mater. Sci. Eng., A 245 268 (1998)

    Article  Google Scholar 

  30. ABAQUS Analysis User’s Manual Version 6.7 (SIMULIA, Providence, RI 2007)

  31. J. Lee, G.L. Fenves: Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 124 892 (1998)

    Article  Google Scholar 

  32. J. Lubiner, J. Oliver, S. Oller, E. Onate: A plastic-damage model for concrete. Int. J. Solids Struct. 25 299 (1989)

    Article  Google Scholar 

  33. J. Lemaitre: A Course on Damage Mechanics 2nd ed (Springer, Berlin 1996)

    Book  Google Scholar 

  34. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 1564 (1992)

    Article  CAS  Google Scholar 

  35. H. Guckel: Silicon microsensors: Construction, design and performance. Microelectron. Eng. 15 387 (1991)

    Article  Google Scholar 

  36. J.I. Jang, G.M. Pharr: Influence of indenter angle on cracking in Si and Ge during nanoindentation. Acta Mater. 56 4458 (2008)

    Article  CAS  Google Scholar 

  37. Y.L. Tsai, J.J. Mecholsky: Fractal fracture of single crystal silicon. J. Mater. Res. 6 1248 (1991)

    Article  CAS  Google Scholar 

  38. R. Ballarini, R.L. Mullen, Y. Yin, H. Kahn, S. Stemmer, A.H. Heuer: The fracture toughness of polysilicon microdevices: A first report. J. Mater. Res. 12 915 (1997)

    Article  CAS  Google Scholar 

  39. A.M. Fitzgerald, R.H. Daukardt, T.W. Kenny: Fracture toughness and crack growth phenomena of plasma-etched single crystal silicon. Sens. Actuators, A 83 194 (1992)

    Article  Google Scholar 

  40. M.Y. Tsai, C.H. Chen: Evaluation of test methods for silicon die strength. Microelectron. Reliab. 48 933 (2008)

    Article  Google Scholar 

  41. L. Geng, Y. Shen, R.H. Wagoner: Anisotropic hardening equations derived from reverse-bend testing. Int. J. Plast. 18 743 (2002)

    Article  CAS  Google Scholar 

  42. S. Shim, J. Jang, G.M. Pharr: Extraction of flow properties of single-crystal silicon carbide by nanoindentation and finite-element simulation. Acta Mater. 56 3824 (2008)

    Article  CAS  Google Scholar 

  43. T.L. Anderson: Fracture Mechanics: Fundamentals and Applications 2nd ed (CRC Press, Boca Raton, FL 1995)

    Google Scholar 

  44. A. Hillerborgm, M. Modeer, P.E. Petersson: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6 773 (1976)

    Article  Google Scholar 

  45. A. Muchtar, L.C. Lim: Indentation fracture toughness of high purity submicron alumina. Acta Mater. 46 1683 (1998)

    Article  CAS  Google Scholar 

  46. R.F. Cook, G.M. Pharr: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73 787 (1990)

    Article  CAS  Google Scholar 

  47. S. Carlsson, S. Biwa, P-L. Larsson: On frictional effects at inelastic contact between spherical bodies. Int. J. Mech. Sci. 42 107 (2000)

    Article  Google Scholar 

  48. J.T. Hagan: Cone cracks around Vickers indentation in fused silica glass. J. Mater. Sci. 14 462 (1979)

    Article  CAS  Google Scholar 

  49. A. Kailer, Y.G. Gogotsi, K.G. Nickel: Phase transformation of silicon caused by contact loading. J. Appl. Phys. 81 3057 (1997)

    Article  CAS  Google Scholar 

  50. K. Kese, D.J. Rowcliffe: Nanoindentation method for measuring residual stress in brittle materials. J. Am. Ceram. Soc. 86 811 (2003)

    Article  CAS  Google Scholar 

  51. R. Tandon: A technique for measuring stresses in small spatial regions using cube-corner indentation: Application to tempered glass plates. J. Eur. Ceram. Soc. 27 2407 (2007)

    Article  CAS  Google Scholar 

  52. P. Ostojic, R.M. Phersom: A review of indentation fracture theory: Its developments, principles and limitations. Int. J. Fract. 33 297 (1987)

    Article  Google Scholar 

  53. R.D. Dukino, M.V. Swain: Comparative measurement of indentation fracture toughness with Berkovich and Vickers indenters. J. Am. Ceram. Soc. 75 3299 (1992)

    Article  CAS  Google Scholar 

  54. G.M. Pharr: Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng., A 253 151 (1998)

    Article  Google Scholar 

  55. D.B. Marshall, B.R. Lawn: Residual stress effects in sharp contact cracking: I. J. Mater. Sci. 14 200 (1979)

    Article  Google Scholar 

  56. D.B. Marshall, B.R. Lawn: Residual stress effects in sharp contact cracking: II. J. Mater. Sci. 14 2225 (1979)

    Article  Google Scholar 

  57. D.S. Harding: Cracking in brittle materials during low-load indentation and its relation to fracture toughness. Ph.D. Dissertation, Rice University, Houston, TX 1995

    Google Scholar 

  58. S. Wen, J. Bentley, J. Jang, G.M. Pharr: Cross sectional TEM studies of indentation-induced phase transformation in Si: Indenter angle effects, Fundamentals of Nanoindentation and Nanotribology IIIedited by K.J. Wahl, N. Huber, A.B. Mann,D.F. Bahr, and Y-T. Cheng (Mater. Res. Soc. Symp. Proc 841 Warrendale, PA 2005) R10.4

  59. Y.Q. Wu, X.Y. Yang, Y.B. Xu: An HREM study of a lateral microcrack beneath indentation of [001] silicon. Acta Metall. Sinica 11 342 (1998)

    Google Scholar 

  60. A. Pajares, M. Chumakow, B.R. Lawn: Strength of silicon containing nanoscale flaws. J. Mater. Res. 19 657 (2004)

    Article  CAS  Google Scholar 

  61. S-R. Jian: Mechanical deformation induced in Si and GaN under Berkovich nanoindentation. Nanoscale Res. Lett. 3 6 (2008)

    Article  CAS  Google Scholar 

  62. J. Yan, H. Takahashi, X. Gai, H. Harada, J. Tamaki, T. Kuriyagawa: Load effects on the phase transformation of single-crystal silicon during nanoindentation tests. Mater. Sci. Eng., A 423 19 (2006)

    Article  CAS  Google Scholar 

  63. S.J. Lloyd, J.M. Molina-Aldareguia, J.W. Clegg: Deformation under nanoindents in Si, Ge, and GaAs examined through transmission electron microscopy. J. Mater. Res. 16 3347 (2001)

    Article  CAS  Google Scholar 

  64. J. Lankford, D.L. Davidson: The crack-initiation threshold in ceramic materials subject to elastic/plastic indentation. J. Mater. Sci. 14 1662 (1979)

    Article  CAS  Google Scholar 

  65. T. Sata, K. Takamoto, H. Yoshikawa: Ultra-micro indentation hardness tester. Bull. Jap. Prec. Eng. 13 13 (1969)

    Google Scholar 

  66. T. Vodenitcharova, L.C. Zhang: A new constitutive model for the phase transformations in mono-crystalline silicon. Int. J. Solids Struct. 40 2989 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, H., Shen, Y., Chen, Q. et al. A plastic damage model for finite element analysis of cracking of silicon under indentation. Journal of Materials Research 25, 2224–2237 (2010). https://doi.org/10.1557/jmr.2010.0270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.0270

Navigation